Высоковольтный выпрямитель и стабилизатор

Виды выпрямителей и их характеристики. Выпрямителем называется устройство для преобразования пере­менного напряжения в постоянное . Основное назначение выпрями­теля заключается в сохранении направления тока в нагрузке при изменении полярности приложенного напряжения. Выпрямитель можно рассматривать как один из типов инверторов напряжения. Обоб-щенная структурная схема выпрямителя приведена на рис.17.1. В состав выпрямителя могут входить: силовой трансформатор СТ, вентильный блок ВБ, фильтрующее устройство ФУ и стабили­затор напряжения СН. Трансформатор СТ выполняет следующие фун­к­ции: преобразует значение напряжения сети, обеспечивает гальваническую изоляцию нагрузки от силовой сети, преобразует количество

Рис.17.1. Обобщенная структурная схема выпрямителя

фаз силовой сети. В импульсных источниках питания трансформатор обычно отсутствует, так как его функции выпол­няет высокочастотный инвертор.

Вентильный блок ВБ является основным звеном выпрямителя, обеспечивая однонаправленное протекание тока в нагрузке. В каче­стве вентилей могут использоваться электровакуумные, газораз­рядные или полупроводниковые приборы, обладающие односто­ронней электропроводностью, например, диоды, тиристоры, тран­зисторы и др. Идеальные вентильные элементы должны пропускать ток только в одном (прямом) направлении и совсем не пропускать его в другом (обратном) направлении. Реальные вентильные эле­менты отличаются от идеальных прежде всего тем, что они пропус­кают некоторый ток в обратном направлении и имеют падение на­пряжения при протекании прямого тока. Это сказывается на сни­жении КПД вентильного блока и снижении эффективности выпря­мителя в целом.

Фильтрующее устройство ФУ используется для ослабления пульсаций выходного напряжения. В качестве фильтрующего уст­ройства обычно используются фильтры нижних частот (ФНЧ), вы­полненные на пассивных R, L, С элементах или, иногда, с примене­нием активных элементов - транзисторов, операционных усилите­лей и пр. Качество ФУ оценивают по его способности увеличивать коэффициент фильтрации q , равный отношению коэффициентов пульсации на входе и выходе фильтра.

Стабилизатор напряжения СН предназначен для уменьшения влияния внешних воздействий: изменения напряжения питающей сети, температуры окружающей среды, изменения нагрузки и др., - на выходное напряжение выпрямителя. Стабилизатор напряже­ния можно установить не только на выходе выпрямителя, но и на его входе. Если к стабильности выходного напряжения не предъяв­ляется особых требований, то стабилизатор может быть или совсем исключен или его функции переданы другим узлам. Например, в импульсных источниках питания функции стабилизатора может выполнять регулируемый инвертор (РИ) или регулируемый вен­тильный блок.


Кроме основных узлов в состав выпрямителя могут входить различные вспомогательные элементы и узлы, предназначенные для повышения его надежности: узлы контроля и автоматики, узлы защиты и др., например, узлы автоматического переключения на­пряжения питающей сети 110-220 В.

Классификация выпрямителей. Для классификации выпря­мителей используют различные признаки: количество выпрямлен­ных полуволн (полупериодов) напряжения, число фаз силовой сети, схему вентильного блока, тип сглаживающего фильтра, наличие трансформатора и др.

По количеству выпрямленных полуволн различают однополу­периодные и двухполупериодные выпрямители. По числу фаз пи­тающего напряжения различают однофазные, двухфазные, трех­фазные и шестифазные выпрямители. При этом под числом фаз пи­тающего напряжения понимают число питающих напряжений с от­личными друг от друга начальными фазами. Так, например, если для работы выпрямителя требуется одно-единственное питающее напряжение, то такой выпрямитель будет однофазным. Если же для работы выпрямителя требуются два питающих напряжения, сдви­нутых друг относительно друга на какой-либо угол (чаще всего на 180°), то такой выпрямитель называют двухфазным. Аналогично, если для работы выпрямителя требуются три питающих напряже­ния, сдвинутые друг относительно друга на угол, равный 120°, то такой выпрямитель называют трехфазным. Шестифазные выпрями­тели состоят из двух групп трехфазных выпрямителей, питаемых противофазными напряжениями трехфазной сети.

По схеме вентильного блока различают выпрямители с парал­лельным, последовательным и мостовым включением однофазных выпрямителей. Схемы таких выпрямителей приведены на рис.17.2.

Однофазный однополупериодный выпрямитель , схема кото­рого приведена на рис.17.2,a, является простейшим.

Такой выпрямитель пропускает на выход только одну полу­волну питающего напряжения, как показано на рис.17.3а. Такие выпрямители находят ограниченное применение в маломощных устройствах, так как они характеризуются плохим использованием трансформатора и сглаживающего фильтра.

Двухфазный двухполупериодный выпрямитель , приведенный на рис.17.2,б, представляет собой параллельное соединение двух одно-

фазных выпрямителей, питаемых от двух половин вторичной обмотки и . С помощью этих полуобмоток создаются два противофаз-

Защита своего дома от перепада напряжения — одна из главных задач. Часто бывает, что электрический ток «прыгает», это может быть обусловлено рядом причин. Основная нагрузка на сеть приходится холодным зимним периодом, но может быть жарким летом.

В том случае, когда перегреваются от горячих солнечных лучей, такие перегрузки грозят многими неприятностями. Прежде всего, бытовая техника, которая включена в сеть, может сгореть.

Это касается не только бытовой техники, но и компьютеров, ноутбуков или разнообразных гаджетов, стоящих на зарядном устройстве. Сгоревшая техника не всегда подлежит ремонту, а если она еще находится на гарантии, то делать ее никто не будет. Большинство случаев не предусматривает гарантии на перепады напряжения и повреждения приборов.

На помощь со стабилизированием электропитания в доме и регулировании перепада электрического напряжения, придет выпрямитель переменного тока. Он устанавливается дома, управляет электрическим током, поступающим на помещение. Еще его называют трансформатором или выпрямителем. Но все это одно и то же устройство, которое направлено на защиту электроприборов.

Какой стабилизатор выбрать для дома?

Выбор стабилизаторов происходит между однофазовым и трехфазовым.

Для этого нужно:

  1. Выяснить, какие приборы и переменный ток есть в помещение. Если это однофазовое напряжение, тогда стабилизатор подойдет с одной фазой.
  2. Когда в доме имеются мощные электрические приборы , тут нужен стабилизатор с 3 фазами.
  3. Бывают ситуации , что к дому подходит 3 фазы, а надобности в этом нет. Если все электроприборы одинаковой мощности, можно на каждую фазу установить по одному выпрямителю. В случае, когда требуются более мощные трехфазовые выпрямители, можно установить на несколько фаз один, а остальные приборы пустить как обход трансформатору.

Также, при выборе выпрямителя, нужно учитывать его мощность для каждого электрического прибора.

Для механизмов с электродвигателями, берут определенный коэффициент, который кратный:

  1. Стиральная машина – от 3 до 5.
  2. Микроволновая печь – 2.
  3. Холодильник – от 5 до 10.
  4. Электрическая – от 7 до 10.

При таких коэффициентах, нужно останавливать свой выбор на трансформаторе с запасом мощности больше 30%. Еще это полезно для будущих приборов.

Приобретение стабилизатора напряжения — очень важное и ответственное мероприятие. К нему рекомендуется тщательно подготовиться. В первую очередь, следует определиться, нужен ли он вообще.

Как показывает практика, напряжение в электрических сетях часто различается, поэтому выпрямитель необходим даже для профилактики.

Важно отметить, что свое внимание нужно обращать на основные характеристики:

  1. Мощность на выходе.
  2. Количество фаз.
  3. Общая масса.
  4. Размер устройства.
  5. Срок эксплуатации.
  6. Рабочий спектр напряжения.
  7. Скорость реагирования на перепады напряжения.

Также, нужно уточнить, какая нагрузка и для какого прибора требуется? Если это несколько бытовых приборов небольшой мощности, подойдет однофазовый стабилизатор. В случае, когда приборов много и нагрузку требуется распределять, то тут не обойтись без трехфазового выпрямителя.

Обзор моделей

На мировом рынке электротехники представлен огромный выбор стабилизаторов напряжения.

Очень важно не растеряться и приобрести действительно необходимый трансформатор для определенных условий.

Например:

АСН-1000 Н2/1-Ц


Это однофазовый цифровой стабилизатор, его стоимость на рынке 2600 рублей. Он вешается на стену.

Штиль R-600

Более дорогая, примерная цена в пределах 4000 рублей. Предназначен для защиты электропитания приборов при переменном напряжении. В особенности подходит для электронной техники.

Модель FoxweldSmart 500


Это бытовой однофазовый напольный выпрямитель. Издает высокий уровень шума, цена регулируется пределами 1000 рублей.

TEPLOCOM ST-555 (400ВА, 220В) БАСТИОН


Трехфазовый мощный трансформатор , используется при больших нагрузках электрической сети. Стоимость 3700 рублей.

Модель SKAT-ST


Трехфазовый стабилизатор , используется исключительно в промышленных целях. Цена его от 5000 рублей.

LIDER PS-400W


Электрический трехфазовый выпрямитель. Мощность от 400 ватт, что позволяет использовать на больших промышленных помещений. Быстродействующий широкоспекторный. Стоимость в пределах 7500 рублей.

PROGRESS


Бывают как трехфазовые, так и однофазовые. Применяются для дома, офиса и большого производства. Защищает от низкого напряжения и его перепадов.

Выбор представлен очень широкий, главное, определиться, для каких нужд нужен стабилизатор напряжения.

Большинство потребителей советуют приобретать трехфазовые трансформаторы. Они подходят как для дома, так и для дачи. Выбирая стабилизатор, потребители опираются не только на его мощность, но и шумовой эффект.

Если трансформатор напряжения работает очень громко, то он влияет ночью. Также, покупатели благоприятно отзываются о внешнем виде некоторых моделей. Важно, чтобы они прекрасно вписывались в интерьер дома.

Что такое стабилизатор и для чего он нужен?

На сегодняшний день, рынок электроприборов предлагает большой выбор выпрямителей. Устройства можно подобрать по техническим характеристикам, которые будут подходить определенной электросети.

Но для начала нужно разобраться, что же такое трансформатор переменного тока. Если его правильно подобрать, он будет служить долгие годы. Устройство, как уже говорилось ранее, защищает электроприборы от перепада переменного тока.

С помощью выпрямителя тока, все электроприборы работают в щадящем режиме. Это позволяет сэкономить на электроэнергии и продлить эксплуатацию бытовой техники. Если подробно разобраться, то вся электротехника изготавливается со специальной программой и рассчитана на определенное напряжение в сети.

Если все условия соблюдены, бытовые приборы будут работать с высокой производительностью и минимальной затратой энергии. Переменный ток электрической сети часто меняется, поэтому выпрямитель выравнивает его.

Еще применяют трансформаторы напряжения для двигателей автомобилей. Они нужны для того, чтобы двигатель мог завестись без перегрузок с низкого напряжения. Пример двигателя автомобиля, можно взять мотор стиральной машины. При постоянных перепадах без стабилизатора тока, двигатель испытывает большие перегрузки, как следствие может сгореть.

Виды, их характеристики

Самые популярные виды приборов:

Ступенчатые выпрямители


Это устройства переменного напряжения самое распространенное. Оно удобно тем, что у такого стабилизатора одни из самых лучших характеристик. Также, ценовая политика достаточно демократична. Работает выравниватель при помощи специальных ключей отводов с различным коэффициентом переменного тока.

Феррорезонансные устройства


Этот трансформатор считается первым, уже не так современен, как другие. Из-за его недостатков, трансформатор не пользуется популярностью. Он слишком шумный и большой по габаритам. Также, высокая чувствительность к перепадам напряжения не дает устройству эффективно работать.

Электромеханические трансформаторы тока


Работают с помощью двигателя, который управляет ползунком. Он очень высокоточный, регулируется с помощью специальных витков. Имеет широкий диапазон стабилизации. Но есть существенные недостатки такого выпрямителя. Он очень быстро изнашивается, механизм работает только с течением одного года. Нет шумоизоляции, очень громко работает.

Бестрансформаторные устройства


Один из самых новых типов трансформаторов. Он имеет ряд положительных сторон, что значительным образом выделяет его из всех имеющихся моделей. В первую очередь — это расширенный спектр напряжения на входе, высокая мощность, легкий, малогабаритный. Единственный весомый недостаток такого трансформатора, это слишком высокая цена. Обычный потребитель не всегда сможет его себе позволить.

Также, они все различаются по фазам:

  1. Однофазовые.
  2. Трехфазовые.

Рассматривая подробно однофазовые трансформаторы, можно выделить несколько особенностей. Он нужен при пользовании бытовой техникой с напряжением сети 220 вольт. Они могут решить много задач, что касается электроснабжения дома.

Расчёт мощности


Перед тем, как приобрести стабилизатор напряжения, очень важно сделать расчет мощности всего, чему необходима электроэнергия. То есть, требуется подсчитать сумму всех электрических приборов дома.

Рекомендуется также учесть тот факт, что некоторые виды электродвигателей по мощности намного больше, чем установлено. Тогда, в свою очередь, выпрямитель напряжения должен быть намного мощнее всех двигателей и компрессоров в пять раз.

Чтобы правильно рассчитать мощность, нужно не только сложить все бытовые приборы, но учитывать впускаемый ток. Чтобы узнать мощность электрическийх приборов, рекомендуется посмотреть этикетку или технический паспорт. Еще одним моментов является тип нагрузки, который также следует учесть при расчетах.

Она бывает 2 типов:

– это преобразование приборами различных типов энергии. Таких как световая или тепловая. Большинство электрических приборов имеют только активную нагрузку. Они потребляют приблизительно один квт электроэнергии. – к ней относятся разнообразные двигатели. Эти бытовые приборы имеют как полную мощность, так активную. Она имеет условное обозначение. Если требуется вычислить мощность такого электроприбора, нужно активную мощность разделить на указанное условное обозначение.

Также, в расчетах учитываются пусковые токи, то есть потребление электроэнергии при запуске прибора. Такие токи есть наличием у приборов с электродвигателем. Если поставили трансформатор, то нужно мощность таких приборов умножать на пять. В противном случае, трансформатор не предоставит возможность включить прибор.

Выпрямитель - это устройство, преобразующее переменное разнополярное напряжение в пульсирующее однополярное. Такое преобразование можно осуществить с помощью одного или нескольких вентилей - приборов с односторонней проводимостью, включенных по определенной схеме.

Для выпрямителей в качестве вентилей можно использовать электровакуумные (кенотроны), ионные (газотроны) и полупроводниковые диоды, обеспечивающие протекание тока только в одном направлении.

Наиболее распространены полупроводниковые диоды, имеющие по сравнению с кенотронами и газотронами меньшие габариты и вес, большие срок службы и механическую прочность. Полупроводниковые диоды потребляют малую мощность, так как не нуждаются в цепи накала.

Недостатком полупровониковых диодов является сильная зависимость их параметров от температуры. Предельная рабочая температура для германиевых диодов, для кремниевых.

Если обратное напряжение в схеме выпрямителя превышает допустимое обратное напряжение данного типа вентиля, то для обеспечения надежной работы выпрямителя можно использовать последовательное соединение вентилей. В этом случае при одинаковых обратных сопротивлениях вентилей напряжение распределяется поровну между отдельными вентилями. Например, если имеем три последовательно включенных Вентиля (рис. 8.1), то обратное напряжение, приложенное к каждому из них, равно .

При разбросе значений обратных сопротивлений, что харатерно для полупроводниковых диодов, обратное напряжение, приложенное к каждому из диодов, различно. Наибольшее обратное напряжение падает на диоде с наибольшим обратным сопротивлением и может превысить для данного типа диода.

Для равномерного распределения обратного напряжения между последовательно включенными диодами каждый из них шунтируют резистором (рис. 8.1), сопротивление которого на порядок меньше обратного сопротивления данного типа диодов.

При выборе типа вентиля для выпрямителя кроме необходимо также знать максимально допустимый прямой ток через вентиль. Этот параметр связан с максимально допустимой мощностью, выделяемой на диоде, соотношением

где - падение напряжения на открытом диоде при протекании тока , которое составляет для германиевых диодов примерно , а для кремниевых - .

По значению полупроводниковые диоды условно разделяют на маломощные , средней мощности и мощные .

Для выпрямления токов, больших , можно использовать параллельное включение вентилей (рис. 8.2). Выпрямленный ток распределяется поровну между параллельно соединенными вентилями, если их прямые сопротивления равны.

Включении полупроводниковых диодов необходимо учитывать разброс сопротивлений . Наибольший ток протекает через диод с меньшим прямым сопротивлением. Для равномерного распределения токов в каждую ветвь последовательно с диодом включают небольшое добавочное сопротивление .

Обычно выпрямители используются как основные элементы источников питания радиоэлектронной аппаратуры постоянным током. Общая структурная схема такого источника питания представлена на рис. 8.3. В схеме силовой трансформатор изменяет стандартное переменное напряжение сети до такого значения, при котором на выходе выпрямителя обеспечивается заданное постоянное напряжение.

Наличие пульсаций на выходе выпрямителя ухудшает работу большинства потребителей энергии постоянного тока. Например, колебания напряжения питания усилителя могут, накладываясь на полезный сигнал, существенно исказить форму выходного сигнала.

Пульсации на выходе выпрямителя уменьшаются при включении сглаживающих фильтров и стабилизаторов постоянного напряжения.

Для оценки пульсаций на выходе выпрямителя вводится коэффициент пульсаций , определяемый как отношение амплитуды основной (первой) гармоники к постоянной составляющей выпрямленного напряжения, т. е.

Постоянная составляющая представляет собой среднее значение выпрямленного напряжения за период Т

и обычно является исходной величиной при расчете выпрямителя.

Постоянная составляющая выпрямленного тока также задается при расчете выпрямителя

Источники питания были и остаются важнейшей и незаменимой составляющей любой радиоэлектронной схемы. Для обеспечения схем необходимыми напряжениями используют либо автономные источники питания — батареи, аккумуляторы, либо, при питании радиоаппаратуры от сети переменного тока, — сетевые источники. Для того, чтобы понизить напряжение сети с 220 В до приемлемых для питания транзисторных схем значений и обеспечить надежную защиту пользователя от поражения электрическим током, используют понижающий трансформатор (рис. 35.1, 35.16). В исключительно редких случаях используют бестрансформаторные питающие устройства, однако в этом случае все управляющие элементы устройства (ручки, выключатели и пр.) и корпус должны быть надежно изолированы от сети. При пользовании такими устройствами необходимо строжайшее соблюдение правил техники безопасности!

Ниже будут рассмотрены основные варианты схем питания радиоэлектронной аппаратуры.

Простейший выпрямитель — преобразователь переменного тока в постоянный — показан на рис. 35.1, 35.6. К вторичной (понижающей) обмотке трансформатора подключен один полупроводниковый диод VD1. Этот диод пропускает только одну полуволну переменного напряжения (однополупериодное выпрямление), поэтому для сглаживания пульсаций тока на выходе выпрямителя необходимо включать электролитический конденсатор С1 большой емкости. Параллельно ему подключается сопротивление нагрузки. Недостатки такого выпрямителя очевидны: повышенные пульсации выпрямленного напряжения, невысокий КПД. Величина пульсаций будет тем выше, чем меньше емкость сглаживающего пульсации напряжения конденсатора С1 и чем меньше величина сопротивления нагрузки. Величина выходного напряжения такого выпрямителя при работе без нагрузки составляет 1 ,41xUab.

На рис. 35.2 показана схема простейшего выпрямителя — формирователя двуполярного выходного напряжения. Коэффициент полезного действия такого выпрямителя выше, а все приводимые ранее рассуждения полностью распространяются и на эту схему.

Мостовая схема выпрямителя содержит четыре диода и представлена на рис. 35.3. Такая схема подключается к источнику переменного тока, например, к точкам А и В разделительного трансформатора (рис. 35.1). Выпрямитель имеет более высокий КПД, токи в ветвях моста распределяются равномерно. Недостатком схемы являются удвоенные потери на последовательно включенных диодах выпрямителя (за счет «прямого» напряжения). Выходное напряжение мостовой схемы выпрямителя при работе без нагрузки также составляет 1,41 xUAB.

Для выпрямления и умножения выходного напряжения применяют схемы, показанные на рис. 35.4 и 35.5. Часто подобные схемы используют в преобразователях напряжения, в том числе бестрансформаторных, а также в схемах получения высокого напряжения (до десятков киловольт) в телевизионных приемниках, озонаторах, уловителях пыли.

В большинстве случаев выпрямленное напряжение надлежит тщательным образом отфильтровать от пульсаций сети переменного тока. При плохой фильтрации в динамиках будет слышна не радующая душу музыка или речь, а низкочастотный гул или рокот, так называемый «фон» переменного тока. Чем выше качество питающего напряжения, тем лучше будет работать радиоаппаратура. Нефильтрованное питание допустимо использовать лишь для электродвигателей постоянного тока, осветительных и нагревательных приборов.

Для сглаживания выходного напряжения выпрямителей предназначены LC- и RC-фильтры. Простейший из них (L=0, R=0) — емкостный — показан на рис. 35.1 и 35.6. Схема эта, действительно, крайне проста. Однако увеличивать до бесконечности емкость фильтрующего конденсатора невозможно: растут габариты и стоимость конденсатора, снижается надежность устройства в целом. Существует опасность того, что в момент включения устройства в сеть произойдет повреждение диода VD1 либо обмотки трансформатора: ведь незаряженный конденсатор представляет в момент включения короткозамкнутыи элемент. Через обмотку трансформатора и диод в этот момент протекает ток короткого замыкания, многократно превышающий допустимые значения и вызывающий их повреждение.

Для уменьшения переменной составляющей на выходе выпрямителя используют индуктивные (дроссельные) и резистив-но-емкостные Г- и П-образные фильтры (рис. 35.7 — 35.9), а также их последовательное соединение. Напомним, если активное сопротивление (резистор) представляет собой одинаковое сопротивление как для постоянного, так и для переменного тока, то конденсатор для постоянного тока является разрывом цепи, а для переменного тока, в идеале, служит коротким замыканием (см. также главу 3). В свою очередь, индуктивность (дроссель), также в идеале, представляет собой бесконечно малое сопротивление постоянному току и бесконечно большое сопротивление переменному току. Следовательно, использование в качестве элемента фильтра дросселей вместо резисторов предпочтительнее. Однако дроссели имеют значительные габариты, массу и цену, являются более дефицитными и менее надежными элементами по сравнению с обычными резисторами.

В радиоаппаратуре используют и транзисторные фильтры (рис. 35.10). Радиолюбителю предлагается самостоятельно испытать и сравнить различные виды выпрямителей и фильтров при разных параметрах входящих в них элементов. Для контроля «качества» выходного напряжения может быть использован УНЧ или осциллограф, на вход которых через разделительный конденсатор подается выпрямленное напряжение. Питание усилитель должен получать от батарей (аккумулятора) либо от иного источника питания с хорошей фильтрацией выходного напряжения. В качестве простейшего тестера качества фильтрации можно использовать и телефонный капсюль, также подключаемый к выходу выпрямителя или фильтра через разделительный конденсатор.


Далее будут рассмотрены простые стабилизаторы тока (рис. 35.11 — 35.15) и напряжения (рис. 35.16 — 35.20). Схемы стабилизации тока зачастую используют в генераторах импульсов для заряда постоянным током времязадающих конденсаторов, а также в измерительной технике, например, при измерении сопротивлений. На рис. 35.11 и 35.12 показаны схемы стабилизаторов тока [МК 5/86-XVI], При увеличении напряжения на таком двухполюснике (рис. 35.11) происходит самоограничение тока через него. Величину резисторов R1 и R2 можно определить как:



На рис. 35.12 и 35.13 представлены другие схемы ограничения и стабилизации тока. При возрастании тока через датчик тока R2 (рис. 35.12) или R1 и включенный ему параллельно потенциометр R3 (рис. 35.13) уменьшается смещение на базе транзистора VT2 (рис. 35.12) или VT1 (рис. 35.13), соответственно. Транзисторы плавно, пропорционально протекающему через резисторы току, запираются, и ток стабилизируется. В определенных пределах ток ограничения (рис. 35.13) плавно регулируется потенциометром R3.

На рис. 35.14 показана схема стабилизатора тока на основе полевого транзистора. При увеличении тока через резистор R1 меняется смещение на управляющем (3 — И) переходе транзистора, он плавно запирается, ограничивая ток нагрузки.

Стабилизатор тока на основе микросхемы, в состав которой входит несколько десятков элементов (рис. 35.15), может обеспечить широкий диапазон токов нагрузки [Дж. Уитсон]. Популярная микросхема стабилизатора напряжения может стабилизировать еще и ток. Величина стабилизируемого тока в нагрузке рассчиты вается следующим образом: lH=(UBb|X/R1)+10 мА, где lH — в мА 11вых — в В; R1 — в кОм.



На рис. 35.16 представлена схема несложного стабилизированного источника питания. Он содержит понижающий трансформатор, мостовой выпрямитель, конденсаторный фильтр и полупроводниковый стабилизатор напряжения. Схема стабилизатора напряжения позволяет плавно регулировать выходное напряжение в пределах от 0 до 12 В и защищена от коротких замыканий на выходе. Для питания низковольтного паяльника, а также для экспериментов с переменным электрическим током предусмотрена дополнительная обмотка трансформатора. Имеется индикация постоянного напряжения (светодиод HL2) и переменного (светодиод HL1). Для включения всего устройства используется тумблер SA1, а паяльника — SA2. Нагрузку отключает SA3. Для защиты цепей переменного тока от перегрузок предусмотрены предохранители FU1 и FU2. На ручке регулятора выходного напряжения (потенциометр R4) нанесены значения выходных напряжений.


На рис. 35.17 показан фрагмент схемы модифицированного стабилизатора (рис. 35.16) с индикацией короткого замыкания в нагрузке. В нормальном режиме светится зеленый светодиод, при замыкании нагрузки — красный.


Очень простой и высококачественный стабилизатор на специализированной микросхеме серии К142ЕН изображен на рис. 35.18. Транзисторные стабилизаторы показаны на рис. 35.19 и 35.20 [Р 4/81-61]. При значительных токах нагрузки транзистор VT4 (рис. 35.20) следует закрепить на теплоотводящей пластине из цветного металла.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

В связи с ростом энергопотребления домохозяйств подстанции не редко приходится модернизировать. В ином случае качество энергоснабжения заметно снижается. Решением проблемы может стать установка стабилизатора или выпрямителя напряжения.

Под выпрямителем тока понимается полупроводниковое, механическое, электровакуумное устройство. Большинство таких приборов создают «пульсирующий» ток. Их основные преимущества заключаются в следующем:

  • незначительные пульсации напряжения, неразрывная форма выходного тока;
  • высокий КПД во всем регулировочном диапазоне;
  • эффективное воздушное охлаждение;
  • герметичность конструкции обеспечивает защиту от проникновения внутрь агрессивных сред;
  • современные модели имеют промышленный интерфейс для управления с пульта или компьютера при различной удаленности;
  • возможность задать автоматический режим работы;
  • модульная конструкция выпрямителей высокой мощности позволяет работать при неисправности одного силового модуля;
  • оптимальные массогабаритные параметры;
  • возможность использования в качестве устройства выпрямления одно- и трехфазного тока.

Представленные в продаже выпрямители тока просты в обслуживании и отличаются высокой степенью ремонтопригодности. Для них характерен высокой энергетический фактор, то есть небольшое реактивное энергопотребление (за исключением тиристорных моделей).

Стабилизаторы напряжения – уникальная техника для автоматической регулировки сетевых параметров на прикрепленных зажимах с заранее установленными пределами. Основное отличие стабилизаторов от выпрямителей заключается в принципе их действия. Например, в стабилизирующих устройствах параметрического типа в основу положено использование свойств нелинейных элементов: карборундовых резисторов, насыщенных дросселей, нелинейных конденсаторов.

Стабилизаторы компенсационного типа работают за счет воздействия колебаний выходного напряжения через цепочку обратной связи на регулирующий элемент. Как правило, это замкнутые системы автоматической регулировки, поэтому их иногда именуют регуляторами напряжения. Через регулирующий орган ток проходит импульсно или непрерывно.

Преимущества стабилизаторов напряжения:

  • многофункциональность в отличие от выпрямителей. Современные модели стабилизаторов не только регулируют напряжение, но и могут включать задержку его подачи;
  • возможность сетевого мониторинга посредством вольтметров встроенного типа;
  • наличие дополнительной защиты от замыканий в подключенной сети и перенапряжений с внешней стороны;
  • позволяют владельцу быть в курсе происходящего с электросетью.