Преобразователи тока – верное решение. Малогабаритный датчик переменного тока Бесконтактный датчик переменного тока

Для контроля потребления тока, фиксируйте блокировку моторов или аварийное обесточивание системы.

Работа с высоким напряжением опасна для здоровья!

Касание винтов контактных колодок и их выводов может привести к поражению электрическим током. Не прикасайтесь к плате, если она подключена к бытовой сети. Для готового устройства используйте изолированный корпус.

Если вы не знаете как подключить датчик к электроприбору, работающему от общей сети 220 В или у вас есть сомнения - остановитесь: вы можете устроить пожар или убить себя.

Вы должны чётко понимать принцип работы устройства и опасности работы с высоким напряжением.

Видеообзор

Подключение и настройка

Датчик общается с управляющей электроникой по трём проводам . На выходе сенсора - аналоговый сигнал . При подключении к Arduino или Iskra JS удобно использовать Troyka Shield , а для тех кто хочет избавится от проводов подойдёт Troyka Slot Shield . Для примера подключим шлейф от модуля к группе контактов Troyka Shield, относящихся к аналоговому пину A0 . В своём проекте вы можете использовать любые аналоговые пины.

Примеры работы

Для облегчения работы с датчиком мы написали библиотеку TroykaCurrent , которая переводит значения аналогового выхода датчика в миллиамперы. Скачайте и установите её для повторения описанных ниже экспериментов.

Измерение постоянного тока

Для измерения постоянного тока подключим сенсор в разрыв цепи между светодиодной лентой и питанием. Выведем в Serial-порт текущее значение постоянного тока в миллиамперах.

CurrentDC.ino #include Serial.print ("Current is " ) ; Serial.print (sensorCurrent.readCurrentDC () ) ; Serial.println (" mA" ) ; delay(100 ) ; }

Измерение переменного тока

Для измерения переменного тока подключим датчик в разрыв цепи между источником переменного напряжения и нагрузкой. Выведем в Serial-порт текущее значение переменного тока в миллиамперах.

CurrentAC.ino // библиотека для работы с датчиком тока (Troyka-модуль) #include // создаём объект для работы с датчиком тока // и передаём ему номер пина выходного сигнала ACS712 sensorCurrent(A0) ; void setup() { // открываем последовательный порт Serial.begin (9600 ) ; } void loop() { // вывод показателей сенсора для постоянного тока Serial.print ("Current is " ) ; Serial.print (sensorCurrent.readCurrentAC () ) ; Serial.println (" mA" ) ; delay(100 ) ; }

Элементы платы

Датчик ACS712ELCTR-05B

Датчик тока ACS712ELCTR-05B основан на эффекте Холла, суть которого в следующем: если проводник с током помещён в магнитное поле, на его краях возникает ЭДС, направленная перпендикулярно к направлению тока и направлению магнитного поля.
Микросхема конструктивно состоит из датчика Холла и медного проводника. Протекающий через медный проводник ток создает магнитное поле, которое воспринимается элементом Холла. Магнитное поле линейно зависит от силы тока.

Уровень выходного напряжения сенсора пропорционально зависит от измеряемого тока. Диапазон измерения от −5 А до 5 A. Чувствительность - 185 мВ/А. При отсутствии тока выходное напряжение будет равняться половине напряжения питания.

Датчик тока подключается к нагрузке в разрыв цепи через колодки под винт. Для измерения постоянного тока подключайте сенсор, учитывая направления тока, иначе получите значения с обратным знаком. Для переменного тока - полярность значения не имеет.

Контакты подключения трёхпроводного шлейфа

Модуль подключается к управляющей электронике по трём проводам . Назначение контактов трёхпроводного шлейфа:

    Питание (V) - красный провод. Исходя из документации питание датчика 5 вольт. В результате теста модуль работает и от 3,3 вольт.

    Земля (G) - чёрный провод. Должен быть соединён с землёй микроконтроллера;

    Сигнальный (S) - жёлтый провод. Подключается к аналоговому входу микроконтроллера. Через него управляющая плата считывает сигнал с датчика.

Один из самых простых способов измерения тока в электрической цепи - это измерение падения напряжения на резисторе, включенном последовательно с нагрузкой. Но при прохождении тока через этот резистор, на нем выделяется бесполезная мощность в виде тепла, поэтому оно выбирается минимально возможной величины, что в свою очередь влечет за собой последующее усиление сигнала. Следует отметить, что приведенные ниже схемы позволяют контролировать не только постоянный, но и импульсный ток, правда, с соответствующими искажениями, определяемыми полосой пропускания усилительных элементов.

Измерение тока в отрицательном полюсе нагрузки.

Схема измерения тока нагрузки в отрицательном полюсе приведена на рисунке 1.

Эта схема и часть информации заимствована из журнала «Компоненты и технологии» №10 за 2006г. Михаил Пушкарев [email protected]
Преимущества:
низкое входное синфазное напряжение;
входной и выходной сигнал имеют общую «землю»;
простота реализации с одним источником питания.
Недостатки:
нагрузка не имеет непосредственной связи с «землей»;
отсутствует возможность коммутации нагрузки ключом в отрицательном полюсе;
возможность выхода из строя измерительной схемы при коротком замыкании в нагрузке.

Измерение тока в отрицательном полюсе нагрузки не представляет сложности. Для этой цели подходит много ОУ, предназначенных для работы с однополярным питанием. Схема измерения тока с применением операционного уси¬лителя приведена на рис. 1. Выбор конкретного типа усилителя определяется требуемой точностью, на которую в основном влияет смещение нуля усилителя, его температурный дрейф и погрешность установки усиления, и необходимым быстродействием схемы. В начале шкалы неизбежна значительная погрешность преобразования, вызванная ненулевым значением минимального выходного напряжения усилителя, что для большинства практических применений несущественно. Для исключения этого недостатка требуется двухполярное питание усилителя.

Измерение тока в положительном полюсе нагрузки


Достоинства:
нагрузка заземлена;
обнаруживается короткое замыкание в нагрузке.
Недостатки:
высокое синфазное входное напряжение (зачастую очень высокое);
необходимость смещения выходного сигнала до уровня, приемлемого для последующей обработки в системе (привязка к «земле»).
Рассмотрим схемы измерения тока в положительном полюсе нагрузки с использованием операционных усилителей.

В схеме на рис. 2 можно применить любой из подходящих по допустимому напряжению питания операционный усилитель, предназначенный для работы с однополярным питанием и максимальным входным синфазным напряжением, достигающим напряжения питания, например AD8603. Максимальное напряжение питания схемы не может превышать максимально допустимого напряжения питания усилителя.

Но есть ОУ, которые способны работать при входном синфазном напряжении, значительно превышающем напряжение питания. В схеме с применением ОУ LT1637, изображенной на рис. 3, напряжение питания нагрузки может достигать 44 В при напряжении питания ОУ, равном 3 В. Для измерения тока в положительном полюсе нагрузки с весьма малой погрешностью подходят такие инструментальные усилители, как LTC2053, LTC6800 от Linear Technology, INA337 от Texas Instruments. Для измерения тока в положительном полюсе есть и специализированные микросхемы, например — INA138 и INA168.

INA138 и INA168

— высоковольтные, униполярные мониторы тока. Широкий диапазон входных напряжений, низкий потребляемый ток и малые габариты — SOT23, позволяют использовать эту микросхему во многих схемах. Напряжение источника питания от 2.7 В до 36 В для INA138 и от 2.7 В до 60 В для INA168. Входной ток — не более 25мкA, что позволяет производить измерение падения напряжения на шунте с минимальной ошибкой. Микросхемы являются преобразователями ток — напряжение с коэффициентом преобразования от1 до 100 и более. INA138 и INA168 в корпусах SOT23-5 имеют диапазон рабочих температур -40°C к +125°C.
Типовая схема включения взята из документации на эти микросхемы и показана на рисунке 4.

OPA454

— новый недорогой высоковольтный операционный усилитель компании Texas Instruments с выходным током более 50 мА и полосой пропускания 2,5 МГц. Одно из преимуществ — высокая стабильность OPA454 при единичном коэффициенте усиления.

Внутри ОУ организована защита от превышения температуры и перегрузки по току. Работоспособность ИС сохраняется в широком диапазоне напряжений питания от ±5 до ±50 В или, в случае однополярного питания, от 10 до 100 В (максимум 120 В). У OPA454 существует дополнительный вывод «Status Flag» — статусный выход ОУ с открытым стоком, — что позволяет работать с логикой любого уровня. Этот высоковольтный операционный усилитель обладает высокой точностью, широким диапазоном выходных напряжений, не вызывает проблем при инвертировании фазы, которые часто встречаются при работе с простыми усилителями.
Технические особенности OPA454:
Широкий диапазон питающих напряжений от ±5 В (10 В) до ±50 В (100 В)
(предельно до 120 В)
Большой максимальный выходной ток > ±50 мА
Широкий диапазон рабочих температур от -40 до 85°С (предельно от -55 до 125°С)
Корпусное исполнение SOIC или HSOP (PowerPADTM)
Данные на микросхему приведены в «Новости электроники» №7 за 2008г. Сергей Пичугин

Усилитель сигнала токового шунта на основной шине питания.

В радиолюбительской практике для схем, параметры которых не столь жесткие, подойдут дешевые сдвоенные ОУ LM358, допускающие работу с входными напряжениями до 32В. На рисунке 5 показана одна из многих типовых схем включения микросхемы LM358 в качестве монитора тока нагрузки. Кстати не во всех «даташитах» имеются схемы ее включения. По всей вероятности эта схема явилась прототипом схемы, приведенной в журнале «Радио» И. Нечаевым и о которой я упоминал в статье «Индикатор предельного тока ».
Приведенные схемы очень удобно применять в самодельных БП для контроля, телеметрии и измерения тока нагрузки, для построения схем защиты от коротких замыканий. Датчик тока в этих схемах может иметь очень маленькое сопротивление и отпадает необходимость подгонки этого резистора, как это делается в случае обычного амперметра. Например, напряжение на резисторе R3, в схеме на рисунке 5 равно: Vo = R3∙R1∙IL / R2 т.е. Vo = 1000∙0,1∙1A / 100 = 1В. Одному амперу тока, протекающему через датчик, соответствует один вольт падения напряжения на резисторе R3. Величина этого соотношения зависит от величины всех резисторов входящих в схему преобразователя. Отсюда следует, что сделав резистор R2 подстроечным, можно спокойно им компенсировать разброс сопротивления резистора R1. Это относится и к схемам, показанным на рисунках 2 и 3. В схеме, представленной на рис. 4, можно изменять сопротивление нагрузочного резистора RL. Для уменьшения провала выходного напряжения блока питания, сопротивление датчика тока – резистор R1 в схеме на рис.5 вообще лучше взять равным 0,01 Ом, изменив при этом номинал резистора R2 на 10 Ом или увеличив номинал резистора R3 до 10кОм.

Эта конструкция родилась оттого, что в свое время я не имел доступа к тем замечательным современным микросхемам, которые были специально разработаны для считывания напряжения с токовых датчиков. Мне необходимо было создать аналог такой микросхемы, максимально простой, но не менее точный. По-моему, получившаяся схема вполне справляется со своей задачей.

Автомобильный датчик тока положительной шины питания на дискретных компонентах.

Первый усилитель тока на транзисторе Q2 имеет усиление 6.2 (Рисунок 1). На Q1 собран усилитель термокомпенсации, управляемый микросхемой IС1В и поддерживающий напряжение коллектора Q1 на постоянном уровне, независимо от температуры схемы. В качестве опорного напряжения схемы используется напряжение источника питания системы 5 В. Указанные на схеме напряжения были измерены в реальном устройстве.

Рисунок 1. Q1 и Q2 преобразуют падение напряжения на токоизмерительном резисторе R3 в синфазное напряжение, согласованное со входными уровнями АЦП микроконтроллеров.

IС1А усиливает разность напряжений на коллекторах транзисторов Q1 и Q2. Коэффициент усиления ОУ этого равен 4.9. R3 образован двумя резисторами для поверхностного монтажа, установленными друг на друга. При выходном напряжении 5 В максимальный ток, измеряемый схемой, равен 25 А.

Два стабилитрона защищают схему от бросков напряжения бортовой сети автомобиля. Как известно, пики напряжения в ней могут достигать 90 В. Если схема спровоцировала вас на критические замечания, подберите номиналы R6 и R7 с минимальным разбросом. Если и это сочтете недостаточным, согласуйте R1 и R4.

Я ничего такого не делал, но работа схемы меня вполне удовлетворяет. В конструкции использованы резисторы для поверхностного монтажа. За исключением R3, все имеют типоразмер 0805 и допуск 1 %.

Не забудьте подобрать для вашей печатной платы стеклотекстолит с фольгой достаточной толщины и сделать широкую токопроводящую дорожку, а для R3 предусмотреть двухпроводное подключение по схеме Кельвина. При максимальном токе 25 А эта схема нагревается очень незначительно.

Для замера больших токов, как правило, применяют бесконтактный метод, — особыми токовыми клещам. Токовые клещи – измерительное устройство, имеющее раздвижное кольцо, которым охватывают электропровод и на индикаторе прибора отображается величина протекающего тока.

Превосходство подобного метода бесспорно, — чтобы замерить силу тока нет нужды разрывать провод, что в особенности немаловажно при измерении больших токов. В данной статье приводится описание токовые клещи постоянного тока , которые вполне возможно сделать своими руками.

Описание конструкции самодельных токовых клещей

Для сборки устройства понадобится чувствительный датчик Холла, к примеру, UGN3503. На рисунке 1 изображено устройство самодельной клещи. Необходим, как уже сказано, датчик Холла, а так же, кольцо ферритовое диаметром от 20 до 25 мм и крупный «крокодил», к примеру, подобный как на проводах для запуска (прикуривания) автомобиля.

Ферритовое кольцо необходимо точно и аккуратно распилить либо разломить на 2-е половинки. Для этого ферритовое кольцо необходимо сначала подпилить алмазным надфилем или пилкой для ампул. Далее, поверхности разлома ошкурить мелкой шкуркой.

С одной стороны на первую половинку ферритового кольца приклеить прокладку из чертежного ватман. С другой стороны на другую половинку кольца наклеить датчик Холла. Приклеивать лучше всего эпоксидным клеем, только нужно проследить, чтобы датчик Холла хорошо прилегал к зоне разлома кольца.

Следующий шаг – соединяем обе половинки кольца и обхватываем его «крокодилом» и приклеиваем. Теперь при нажатии на ручки «крокодила» ферритовое кольцо будет расходиться.

Электронная схема токовых клещей

Принципиальная электрическая схема приставки к мультиметру изображена на рисунке 2. При протекании тока по электропроводу, вокруг него появляется магнитное поле, и датчик Холла фиксирует силовые линии, проходящие через него, и формирует некоторое постоянное напряжение на выходе.

Данное напряжение усиливается (по мощности) ОУ А1 и идет на выводы мультиметра. Соотношение напряжения на выходе от протекающего тока: 1 Ампер = 1 мВольт. Подстроечные сопротивления R3 и R6 — многооборотные. Для настройки необходим лабораторный блок питания с минимальным током на выходе около 3А, и встроенным амперметром.

Сперва подсоедините данную приставку к мультиметру и выставьте её на нуль путем изменения сопротивления R3 и среднем положении R2. Далее, перед любым измерением необходимо будет выставлять ноль потенциометром R2. Выставьте на блоке питания наименьшее напряжение и подсоедините к нему большую нагрузку, например, электролампу, применяемую в фарах автомобиля. Затем на один из проводов, подсоединенный к данной лампе, зацепите «клещи» (рисунок 1).

Повышайте напряжение, до тех пор, пока амперметр блока питания не покажет 2 ампера. Подкрутите сопротивление R6 так, чтобы величина напряжения мультиметра (в милливольтах) соответствовала данным амперметра блока питания в амперах. Еще несколько раз проконтролируйте показания, меняя силу тока. Посредством этой приставки возможно мерить ток до 500А.

Содержание:

Для того чтобы успешно автоматизировать различные технологические процессы, эффективно управлять приборами, устройствами, машинами и механизмами, нужно постоянно измерять и контролировать множество параметров и физических величин. Поэтому неотъемлемой частью автоматических систем стали датчики, обеспечивающие получение информации о состоянии контролируемых устройств.

По своей сути каждый датчик является составной частью регулирующих, сигнальных, измерительных и управляющих приборов. С его помощью преобразуется та или иная контролируемая величина в определенный тип сигнала, позволяющий измерять, обрабатывать, регистрировать, передавать и хранить полученную информацию. В некоторых случаях датчик может оказывать воздействие на подконтрольные процессы. Всеми этими качествами в полной мере обладает датчик тока, используемый во многих устройства и микросхемах. Он преобразует воздействие электрического тока в сигналы, удобные для дальнейшего использования.

Классификация датчиков

Датчики, применяемые в различных устройствах, классифицируются в соответствии с определенными признаками. По возможности измерений входных величин, они могут быть: электрическими, пневматическими, датчиками скорости, механических перемещений, давления, ускорения, усилия, температур и других параметров. Среди них измерение электрических и магнитных величин занимает примерно 4%.

Каждый датчик преобразует входную величину в какой-либо выходной параметр. В зависимости от этого, контрольные устройства могут быть неэлектрическими и электрическими.

Среди последних чаще всего встречаются:

  • Датчики постоянного тока
  • Датчики амплитуды переменного тока
  • Датчики сопротивления и другие аналогичные приборы.

Основным достоинством электрических датчиков является возможность передачи информации на определенные расстояния с высокой скоростью. Применение цифрового кода обеспечивает высокую точность, быстродействие и повышенную чувствительность измерительных приборов.

Принцип действия

По принципу работы все датчики разделяются на два основных вида. Они могут быть генераторными - непосредственно преобразующими входные величины в электрический сигнал. К параметрическим датчикам относятся устройства, преобразующие входные величины в измененные электрические параметры самого датчика. Кроме того, они могут быть реостатными, омическими, фотоэлектрическими или оптико-электронными, емкостными, индуктивными и т.д.

К работе всех датчиков предъявляются определенные требования. В каждом устройстве входная и выходная величина должны находиться в непосредственной зависимости между собой. Все характеристики должны быть стабильными во времени. Как правило эти приборы отличаются высокой чувствительностью, небольшими размерами и массой. Они могут работать в самых разных условиях и устанавливаться различными способами.

Современные датчики тока

Датчиками тока являются устройства, с помощью которых определяется сила постоянного или переменного тока в электрических цепях. В их конструкцию входят магнитопровод с зазором и компенсационной обмоткой, а также электронная плата, выполняющая обработку электрических сигналов. Основным чувствительным элементом служит датчик Холла, закрепляемый в зазоре магнитопровода и соединяемый со входом усилителя.

Принцип действия в целом одинаковый для всех подобных устройств. Под действием измеряемого тока возникает магнитное поле, затем, с помощью датчика Холла осуществляется выработка соответствующего напряжения. Далее это напряжение усиливается на выходе и подается на выходную обмотку.

Основные виды датчиков тока:

Датчики прямого усиления (O/L) . Обладают небольшими размерами и массой, низким энергопотреблением. Диапазон преобразований сигналов существенно расширен. Позволяет избежать потерь в первичной цепи. Работа устройства базируется на магнитном поле, которое создает первичный ток Ip . Далее происходит концентрация магнитного поля в магнитной цепи и его дальнейшее преобразование элементом Холла в воздушном зазоре. Сигнал, полученный с элемента Холла усиливается и на выходе образуется пропорциональная копия первичного тока.

Датчики тока (Eta) . Характеризуются широким диапазоном частот и расширенным диапазоном преобразований. Преимуществами данных устройств является низкое энергопотребление и незначительное время задержки. Работа устройства поддерживается однополярным питанием от 0 до +5 вольт. Действие прибора основано на комбинированной технологии, в которой используется компенсационный тип и прямое усиление. Это способствует существенному улучшению характеристик датчика и более сбалансированному функционированию.

Датчики тока компенсационные (C/L) . Отличаются широким диапазоном частот, высокой точностью и малым временем задержки. У приборов этого типа отсутствуют потери первичного сигнала, у них отличные характеристики линейности и низкий температурный дрейф. Компенсация магнитного поля, создаваемого первичным током Ip , происходит за счет такого же поля, образующегося во вторичной обмотке. Генерация вторичного компенсирующего тока осуществляется элементом Холла и электроникой самого датчика. В конечном итоге, вторичный ток представляет собой пропорциональную копию первичного тока.

Датчики тока компенсационные (тип С) . Несомненными достоинствами этих приборов является широкий диапазон частот, высокая точность информации, отличная линейность и сниженный температурный дрейф. Кроме того, данные приборы могут измерять дифференциальные токи (CD). Они обладают высокими уровнями изоляции и пониженным влиянием на первичный сигнал. Конструкция состоит из двух тороидальных магнитопроводов и двух вторичных обмоток. В основе работы датчиков лежит компенсация ампер-витков. Ток с небольшим значением из первичной цепи проходит через первичный резистор и первичную обмотку.

Датчики тока PRIME . Для преобразования переменного тока используется широкий динамический диапазон. Прибор отличается хорошей линейностью, незначительными температурными потерями и отсутствием магнитного насыщения. Преимуществом конструкции являются небольшие габариты и вес, высокая устойчивость к различным видам перегрузок. Точность показаний не зависит от того как в отверстии расположен кабель и не подвержена влиянию внешних полей. В этом датчике используется не традиционная разомкнутая катушка, а измерительная головка с сенсорными печатными платами. Каждая плата состоит из двух раздельных катушек с воздушными сердечниками. Все они смонтированы на единую базовую печатную плату. Из сенсорных плат формируются два концентрических контура, на выходах которых суммируется наведенное напряжение. В результате, получается информация о параметрах амплитуды и фазы измеряемого тока.

Датчики тока (тип IT) . Характеризуются высокой точностью показаний, широким частотным диапазоном, низким шумом выходного сигнала, высокой стабильностью температуры и низким перекрестным искажением. В конструкции этих датчиков отсутствуют элементы Холла. Первичный ток создает магнитное поле, которое в дальнейшем компенсируется вторичным током. На выходе вторичный ток представляет собой пропорциональную копию первичного тока.

Преимущества датчиков тока в современных схемах

Микросхемы на основе датчиков тока играют большую роль в сохранении энергии. Этому способствует низкое питание и энергопотребление. В интегральных схемах происходит объединение всех необходимых электронных компонентов. Характеристики приборов значительно улучшаются, благодаря совместной работе сенсоров магнитного поля и всей остальной активной электроники.

Современные датчики тока способствуют дальнейшему уменьшению размеров, поскольку вся электроника интегрирована в единственный общий чип. Это привело к новым инновационным компактным дизайнерским решениям, в том числе касающимся и первичной шины. Каждый новый датчик тока обладает повышенной изоляцией и успешно взаимодействует с другими видами электронных компонентов.

Новейшие конструкции датчиков позволяют монтировать их в существующие установки без отключения первичного проводника. Они состоят из двух частей и являются разъемными, что позволяет легко устанавливать эти детали на первичный проводник без каких-либо отключений.

На каждый датчик имеется техническая документация, где отражается вся необходимая информация, позволяющая произвести предварительные расчеты и определить место наиболее оптимального использования.