Удивительный полупроводниковый прибор - туннельный диод

Принцип работы туннельного диода (TД) основан на явлении туннельного эффекта в p-n-переходе, образованном вырожденными полупроводниками. Это приводит к появлению на вольт- амперной характеристике участка с отрицательным дифференциальным сопротивлением при прямом напряжении. Концентрация примесей в p- и n- областях выбирается порядка

10 20 см -3 , следствием чего является малая толщина перехода (порядка 0,01 мкм). Локальные уровни примесей образуют в вырожденных полупроводниках сплошную зону. Уровни Ферми

W Fp , W Fn располагаются соответственно в валентной зоне p-области и в зоне проводимости n-области. В состоянии термодинамического равновесия зона проводимости n-полупроводника и валентная зона p-полупроводника перекрываются на величину

Известно, что частица, имеющая энергию, недостаточную для преодоления потенциального барьера, может пройти сквозь него, если с другой стороны этого барьера имеется свободный энергетический уровень, который она занимала перед барьером. Это явление называется туннельным эффектом. Чем уже потенциальный барьер и чем меньше его высота, тем больше вероятность туннельного перехода. Туннельный переход совершается без затраты энергии. Вольт-амперная характеристика туннельного диода показана на рис.

Для рассмотрения влияния туннельного эффекта на вольтамперные характеристики диода необходимо привести энергетические диаграммы

p-n- перехода для различных значений приложенного напряжения (рис. 2.26, б-з). При построении зонных диаграмм предполагаем, что все энергетические уровни в зоне проводимости от дна зоны до уровня Ферми заполнены электронами, а все уровни выше уровня Ферми свободны (нет штриховки). В валентной зоне p-области все энергетические уровни от потолка зоны до уровня Ферми считаем свободными от электронов, а все уровни ниже уровня Ферми заполненными. Исходя из этого, при U =0 ток через диод протекать не будет, т.к. свободным уровням в одной области соответствуют на той же высоте свободные уровни в другой области. При увеличении прямого напряжения 0 U1 туннельный ток начинает убывать, т.к. перекрытие уровней сокращается и уменьшается число переходов электронов в p-область. При напряжении U = U2 потолок валентной зоны совпадает с дном зоны проводимости, перекрытие зон прекращается и туннельный ток становится равным нулю.

При этом напряжении появляется обычный диффузионный ток инжекции через p-n- переход. С увеличением прямого напряжения U > U2 прямой ток будет возрастать, как и в обычных выпрямительных диодах.

При обратном напряжении U < 0 опять возникают условия для туннельного перехода электронов с заполненных уровней валентной зоны p-области на свободные уровни зоны проводимости n-области. Через диод потечёт обратный ток в направлении от n-области к p-области. Туннельный диод обладает относительно высокой проводимостью при обратном напряжении.

Таким образом, туннельный диод обладает отрицательным дифференциальным сопротивлением в некотором диапазоне прямых напряжений, что позволяет использовать его для генерации и усиления колебаний, а также в переключающих схемах.

Достоинством туннельных диодов являются высокие рабочие частоты, вплоть до СВЧ, низкий уровень шумов, высокая температурная устойчивость, большая плотность тока(10 3 -10 4 А/см 2) .

Как недостаток следует отметить малую отдаваемую мощность из - за низких рабочих напряжений и сильную электрическую связь между входом и вы-ходом, что затрудняет их использование.

Разновидностью туннельных диодов являются обращенные диоды, изготовляемые на основе полупроводника с концентрациями примесей в р - и n - областях диода, меньших, чем в туннельных, но больших, чем в обычных выпрямительных диодах.

Параметры туннельных диодов

Пиковый ток Iп (от сотен микроампер – до сотен миллиампер).

Напряжение пика U п – прямое напряжение, соответствующее току Iп.

Ток впадины Iв, соответствующий напряжению Uв.

Напряжение впадины – прямое напряжение, соответствующее току Iв.

Отношение токов Iп/Iв. Для туннельных диодов из GaAs отношение Iп/Iв ≥10 , для германия равно 3-6.

Напряжение раствора Uр – прямое напряжение, соответствующее типовому току на второй восходящей ветви ВАХ, определяет возможный скачок напряжения на нагрузке при работе туннельного диода в схеме переключения.

Отрицательное дифференциальное сопротивление Rдиф=dU/dI, определяемое на середине падающего участка BAX.

Удельная емкость Сд/ Iп – отношение емкости туннельного диода к пиковому току.

Предельная резистивная частота fr – частота, на которой активная составляющая полного сопротивления диода обращается в нуль.

Резонансная частота f0 – частота, на которой реактивная составляющая полного сопротивления обращается в нуль.


Конец работы -

Эта тема принадлежит разделу:

Расчитать минимальный коэффициент усиления выходного транзистора простейшего ТТЛ вентиля

Слева ттл вентиль И не справа его передаточная характеристика... Электрическая схема ТТЛ вентиля со сложным инвертором...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Принцип работы транзистора Шоттки.
Транзисторы Шоттки отличаются от обычных биполярных транзисторов тем, что они не входят в глубокое насыщение, следовательно, в их базах в открытом состоянии накапливается мало носителей заряда, и в

Как влияет облучение на характеристики р-n перехода.
Реакция интегральных микросхем (ИМС) на ионизирующее излучение обусловлена, в первую очередь, зависимостью параметров её элементов от эффектов смещения и ионизации. В свою очередь, конкретный вид э

Масштабирование. Основные принципы
Даже при одинаковом минимальном размере нормы проектирования обычно отличаются у различных компаний и процессов. Это превращает задачу переноса существующей разработки на другой процесс в весьма тр

Принцип работы транзистора в инверсном режиме
Биполярным транзистором называется электропреобразовательный полупроводниковый прибор, имеющий в своей структуре два взаимодействующих p-n-перехода и три внешних вывода, и предназначенный, в частно

Первый и второй закон Мура.
Закон Мура - эмпирическое наблюдение, сделанное в 1964 году (через шесть лет после изобретения интегральной схемы), в процессе подготовки выступления Г. Муром (одним из основателей Intel). Он выска

Тиристор. Принцип работы

Метод измерения динамических параметров интегральных схем.
К динамическим параметрам, характеризующим свойства микросхемы в режиме переключения, относятся: время задержки сигнала при включении - интервал времени между входными и выходными импульсами

Типы конденсаторов в интегральном исполнении
Принцип действия конденсаторов основан на способности накапливать на обкладках электрические заряды при приложении между ними напряжения. Количественной мерой способности накапливать электрические

Вентильные матрицы
Структура вентильной матрицы состоитиз так называемых базисных ячеек (вентилей) и связей между ними, реализованныхна кристалле посредством канальной технологии. Ячейкисодерж

Конструктивные и тепловые ограничения при проектировании интегральных схем
Основной единицей в определении норм проектирования является минимальная ширина линии. Т.е минимальный размер на фотошаблоне, который может быть надежно перенесен на полупроводников

Модель Эберса-Молла биполярного транзистора
Передаточная модель Эберса-Молла Модель базируется на эквивалентной схеме. Расчетные формулы, объединим в систему

Способы включения биполярного транзистора.
Любая схема включения транзистора характеризуется двумя основными показателями: Коэффициент усиления по току Iвых/Iвх. Входное сопротивление Rвх=Uвх/Iвх

Полевой транзистор. Принцип действия
Различают два вида полевых транзисторов: с управляющим переходом и с изолированным затвором. Все они имеют три электрода: исток (источник носителей тока), затвор (управляющий электрод) и сток (элек

Полевой транзистор с управляющим p-n переходом
Рис. 1. Устройство полевого транзистора с управляющим p-n переходом Полевой транзистор с управляющим p-n переходом - это полевой транзистор, затвор которого изолирован (то

Биполярный транзистор. Принцип работы
Биполярный транзистор - трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с че

Современные системы автоматической идентификации.
Основные: Биометрические Дактилоскопические Штих-коды и чип-карты RFID (это он в основном будет спрашивать!!!) У всех недостатки в точности громоздкости

Полупроводниковые приборы с N - образными характеристиками.
S-приборы полупроводниковые приборы, действие которых основано на S-oбразной вольт-амперной характеристике, на которой есть один (АВ) или несколько участков с отрицательным сопротивлением. У полупр

Система параметров логических элементов.
Основными параметрами цифровых интегральных схем являются их быстродействие, потребляемая мощность, коэффициент объединения по входу, коэффициент разветвления по выходу, устойчивость против внешних

Полупроводниковые приборы с отрицательным сопротивлением.
Тиристор – это полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три и более взаимодействующих выпрямляющих перехода, вольт- амперная характеристика которого имеет участок с отриц

Конструкция и принцип работы многоэмиттерного транзистора.
Многоэмиттерный транзистор (МЭТ) это биполярный транзистор, который имеет несколько эмиттерных областей. Различают МЭТ в которых эмиттерные области объединены одним внешним выводом, и МЭТ в которых

Закон Мура. Степень интеграции интегральных схем.
Зако́нМу́ра - эмпирическое наблюдение, сделанное в 1965 году (через шесть лет после изобретения интегральной схемы), в процессе подготовки выступления Гордоном Муром (одним из основателей

Многослойные полупроводниковые структуры
Реально, чтобы соблюсти оба условия, одного р-п-перехода в кристалле оказывается недостаточно, и приходится изготавливать многослойные полупроводниковые структуры, так называемые гетерост

Инжекционный вентиль. Принцип работы.
Базовый логический элемент (ЛЭ) в литературе называемый вентилем. Элементы интегрально-инжекционной логики выгодно отличаются простотой технологии и конструкции, так как состоят из биполярных транз

Расчет параметров интегрального резистора.
Все расчеты проводятся по упрощенной схеме с использованием табличных значений из справочника. Выбираем ширину базовой области для резистора: Низкоомные резисторы с номиналом R ≤ 1 к

Формула коэффициента усиления биполярного транзистора.
Одним из важнейших применений биполярного транзистора является усиление колебаний. На вход транзистора подаётся маломощный управляющийсигнал. Под действием входного переменного сигнала изменяются

Чем отличается реальная вольтамперная характеристика р-п перехода от теоретической.
Вольт- амперная характеристика p-n-перехода представляет собой зависимость тока через p-n-переход от величины и полярности приложенного напряжения. При выводе вольт- амперной характеристики можно п


Диод Шоттки (также правильно Шотки, сокращённо ДШ) - полупроводниковый диод с малым падением напряжения при прямом включении. Диоды Шоттки используют переход металл-полупроводник в качестве барьера





Как называются приборы, основанные на контакте металл-полупроводник.
Диод Шоттки (также правильно Шотки, сокращённо ДШ) - полупроводниковый диод с малым падением напряжения при прямом включении. Диоды Шоттки используют переход металл-полупроводник в

Нарисуйте схему устройства транзистора с изолированным затвором и объясните его принцип действия.
Транзисторы с изолированным затвором.Полевой транзистор с изолированным затвором – это транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика. Фи

Объясните принцип действия динистора.
Тиристоры - это общее название четырехслойных и пятислойных полупроводниковых приборов, имеющих структуру типа P-N-P-N или P-N-P-N-P. Динистор - это тиристор, который имеет только два выво

Назовите параметры тиристоров.
Тиристором называют полупроводниковый прибор с тремя (или более) p-n-переходами, вольт-амперная характеристика которого имеет участок с отрицательным дифференциальным сопротивлением и который испол

Что такое заказные и полузаказные интегральные схемы.
В отличие от стандартных интегральных схем (ИС), заказные интегральные схемы (Customer Specific Integrated Circuit - CSIC) разрабатываются в соответствии с требованиями заказчика и предназначены дл

Ависимость емкости конденсатора (МДП - процесс) от полярности подаваемого напряжения
Одним из наиболее распространенных методов изучения свойств структур металл - диэлектрик - полупроводник является метод, основанный на анализе зависимости емкости МДП-структуры CМДПот на

Зависимость емкости конденсатора (МДП - процесс) от частоты.
При экспериментальном измерении вольт-фарадных характеристик МДП-структур важное значение имеет частота измерительного сигнала ω. Это связано с тем, что процессы захвата и выброса на поверхнос

Зависимость емкости конденсатора (биполярный тех.процесс) от напряжения.
В качестве конденсаторов, т. е. пассивных элементов полупро­водниковых ИМС, чаще всего находят применение обратно-смещенные р-n переходы, возможно использование прямо-смещенных переходов. Кр

Нарисуйте график зависимости мощности потребления от частоты для КМОП-схем.
Обеспечение работы КМОП-схем в маломощном режиме Имеется несколько типовых рекомендаций, которых следует придерживаться для того, чтобы добиться работы КМОП-приборов в режиме с низким знач

Нарисуйте вертикальную структуру биполярного транзистора с диодом Шоттки.
Наибольшее распространение получили транзисторы, имеющие вертикальную структуру, в которой все выводы от областей транзистора расположены в одной плоскости на поверхности подложки Такая структура н

Принцип построения кольцевого генератора.
Кольцевые генераторы наиболее широко используют для измерения средней задержки ЛЭ в составе БИС. Эти ЛЭ имеют очень малые емкости нагрузки по сравнению с входной емкостью измерительного прибора, на

Принцип работы логического вентиля с тремя устойчивыми состояниями.
В ЛЭ КМОП очень просто реализуют элементы с тремя устойчивыми состояниями. Для этого последовательно с транзисторами инвертора включают два комплементарных транзистора VT1, VT4 (рисунок 20,а), упра

Влияние температуры на параметры биполярного транзистора.
Влияние температуры на работу биполярного транзистора обусловлено тремя физическими факторами: уменьшением потенциальных барьеров в переходах, увеличением тепловых токов переходов и увеличением коэ

Туннельный диод, изобретенный Л. Эсаки (Нобелевская премия 1973г), представляет собой полупроводниковый диод на основе р-п перехода, у которого как р- область (анод А), так и п -область (катод С) выполнены из вырожденного (сильно легированного) полупроводника (рис. 2.1а), поэтому ОПЗ р-п перехода имеет весьма малую ширину ().

В результате потенциальный барьер в р-п переходе оказывается туннельно прозрачным как для электронов зоны проводимости п- области, так и для электронов валентной зоны р- области.

В явлении туннелирования главную роль играют основные носители. Время туннелирования носителей через потенциальный барьер не описывается на привычном языке времени пролета (

, где

− ширина барьера,− скорость носителей); оно описывается с помощью вероятности квантовомеханического перехода в единицу времени и очень мало. Поэтому туннельные диоды можно использовать в диапазоне миллиметровых волн (> 30 – 300ГГц).

При подаче напряжения на переход электроны могут туннелировать из валентной зоны в зону проводимости и наоборот. Для протекания туннельного тока необходимо выполнение следующих условий: 1) энергетические состояния на той стороне перехода, откуда туннелируют электроны, должны быть заполнены; 2) на другой стороне перехода энергетические состояния с той же энергией должны быть свободны; 3) высота и ширина потенциального барьера должны быть достаточно малыми, чтобы существовала заметная вероятность туннелирования; 4) должен выполняться закон сохранения квазиимпульса.

Туннельный диод является негатроном N -типа; его ВАХ представлена на рис. 2.1б.

Работа туннельного диода поясняется энергетическими диаграммами на рис. 2.2. В отличие от методики, принятой при анализе традиционных полупроводниковых приборов, здесь мы не будем использовать понятия квазичастиц - электронов проводимости и дырок в валентной зане, ограничившись рассмотрением поведения реальных электронов как в зоне проводимости, так и в валентной зоне.

Согласно 1) и 2) требованиям туннелировать через барьер могут лишь те электроны, энергии которых соответствуют разрешенные энергетические зоны с противоположной стороны барьера. Эти электроны помечены стрелками на рис.2.2.

Диаграмма 1 соответствует равновесному состоянию V = V 1 = 0. Потоки электронов слева и справа одинаковы, и ток через диод равен нулю: I 1 = 0 (точка 1 на рис. 2.1б).

Диаграмма 2 соответствует малому положительному напряжению V = V 2 , не превышающему пикового напряжения V р на рис. 2.1б. Как видно из диаграммы, туннельный поток электронов слева направо значительно снизился. Туннельный поток электронов справа налево снизился незначительно, так как большинство электронов в зоне проводимости п- области имеют энергии, меньшие

. В результате суммарный туннельный ток возрастает с ростом напряжения (точка 2 на рис. 2.1б).

При напряжении V = V 3 > V p (диаграмма 3) туннельный поток электронов слева направо практически перекрыт. Справа налево туннелируют электроны, энергия которых лежит в диапазон

. Число этих электронов уменьшается с ростом напряжения, поэтому суммарный туннельный ток также уменьшается с ростом напряжения, что соответствует отрицательному дифференциальному сопротивлению (точка 3 на рис.2.1б).

Диаграмма 4 соответствует достаточно большому прямому напряжению V = V 4 > V p , когда туннельные потоки электронов перекрыты (точка 4 на рис. 2.1б). Поток электронов справа налево теперь обусловлен только энергичными электронами в п- области с энергиями

. Механизм этого тока соответствует механизму инжекции энергичных электронов через барьер в обычном полупроводниковом диоде. К этому потоку добавляется поток электронов справа налево из валентной зонып- области в незаполненные разрешенные состояния валентной зоны р- области (на диаграмме 4 не показан). Механизм этого тока соответствует механизму инжекции энергичных дырок через барьер из р- области в п- область в обычном полупроводниковом диоде. Указанные токи образуют диффузионную ветвь ВАХ. Диффузионный ток экспоненциально возрастает с ростом прямого напряжения.

Таким образом, прямая ветвь ВАХ туннельного диода формируется из туннельной и диффузионной ветвей, показанных на рис. 2.1б штриховыми линиями. Туннельная ветвь формирует участок ОДС, диффузионная ветвь ВАХ монотонна.

Диаграмма 5 соответствует обратному напряжению V < 0. Как видно из диаграммы, туннельный поток электронов справа налево практически не зависит от напряжения, а поток электронов слева направо резко возрастает с ростом обратного напряжения (точка 5 на рис. 2.1б). Обратная ветвь ВАХ соответствует туннельному пробою с нулевым напряжением пробоя.


Процесс туннелирования может быть прямым и непрямым. При прямом туннелировании (рис. 2.3а) электроны могут туннелировать из окрестности минимума зоны проводимости в окрестность максимума валентной зоны без изменения квазиимпульса. Это выполняется для прямозонных полупроводников (например, GaAs, GaSb), у которых совпадают положения дна зоны проводимости и потолка валентной зоны в пространстве квазиимпульсов.

Непрямое туннелирование (рис. 2.3в) происходит, когда положения дна зоны проводимости и потолка валентной зоны в пространстве квазиимпульсов не совпадают. Для выполнении закона сохранения квазиимпульса в процессе туннелирования в этом случае должна принимать участие еще одна частица (фонон или примесный центр). Законы сохранения энергии и квазиимпульса при туннелировании с участием фононов формулируются следующим образом: сумма энергии фонона и начальной энергии электрона, туннелирующего из п - в р -область, равна конечной энергии электрона, протуннелировавшего в р -область; сумма начального квазиимпульса электрона и квазиимпульса фонона равна конечному квазиимпульсу протуннелировавшего электрона. В общем случае вероятность непрямого туннелирования гораздо меньше, чем вероятность прямого.

ТУННЕЛЬНЫЙ ДИОД (Эсаки диод) - полупроводниковый диод, содержащий p-n -переход с очень малой толщиной запирающего слоя. Действие Т. д. основано на прохождении свободных носителей (электронов) сквозь узкий потенц. барьер благодаря квантовомеханич. процессу туннелирования (см. Туннельный эффект ).Поскольку вероятность туннельного просачивания электронов через барьер в значит. мере определяется шириной области пространств. заряда в p-n -переходе, Т. д. изготовляют на основе вырожденных полупроводников (с концентрацией примесей до 10 25 - 10 27 м -3). При этом получается резкий p-n -переход с толщиной запирающего слоя 5-15 нм. При изготовлении Т. д. обычно применяют Ge и GaAs; реже используют Si, InSb, In As, PbTe, GaSb, SiC и др. полупроводниковые материалы . Для германиевых диодов в качестве донорных примесей, как правило, используют P или As, в качестве акцепторных - Ga и Аl; для арсенид-галлиевых - Sn, Pb, S, Se, Те (доноры), Zn, Cd (акцепторы). Узкий р - n -переход получают чаще всего методом вплавления.

Первый Т. д. создан на основе Ge Л. Эсаки (L. Ezaki) в -1957. Изобретение Т.д. экспериментально подтвердило существование процессов туннелирования в твёрдых телах. Туннельный механизм переноса заряда обусловливает N -образный вид вольт-амперной характеристики Т. д. (рис. 1). На рис. 2 приведены упрощённые энергетич. диаграммы p-n -перехода Т. д. при разл. напряжениях смещения U . В отсутствие внеш. смещения (рис. 2, а )ферми-уровни в вырожденном (по обе стороны от перехода) находятся на одной высоте соответственно в валентной зоне и зоне проводимости (т. е. уровень Ферми постоянен по всему полупроводнику). Примем, что все разрешённые энергетич. уровни, расположенные ниже уровня Ферми, заняты, а расположенные выше него - свободны. Тогда при U= 0 туннельный переход невозможен и ток I равен нулю (точка А на рис. 1). Если на Т. д. подать небольшое прямое , то происходит уменьшение высоты потенц. барьера или смещение энергетич. уровней p -области относительно энергетич. уровней n -области (рис. 2, б) . В этом случае электроны проводимости из n -области туннелируют сквозь потенц. барьер (не меняя своей энергии) на разрешённые свободные энергетич. уровни валентной зоны p -области - в Т. д. появляется туннельный ток I т, направление к-рого противоположно направлению движения электронов (точка Б на кривой 2, рис. 1). С увеличением U ток I сначала растёт до значения I макс (точка В на кривой 2 , рис. 1), а затем (по мере того как уменьшается степень перекрытия зоны проводимости и-области и валентной зоны p -области) убывает. Начиная с нек-рого значения U мин, эти зоны не перекрываются (рис. 2, в )и туннельный ток прекращается (точка Г на кривой 2, рис. 1); через р - n -переход течёт только . ток I д. При U>U мин Т. д. подобен обычному полупроводниковому диоду, включённому в прямом направлении. При подаче напряжений обратного направления (рис. 2, г) в Т. д. существует ток за счёт электронов, туннелирующих из валентной зоны p -области на свободные разрешённые энергетич. уровни зоны проводимости и-области; этот ток быстро возрастает с увеличением обратного напряжения.


Рис. 1. ВАX туннельных диодов на основе Ge (1 GaAs (2): U -напряжение смещения на туннельном диоде; I /I макс -отношение тока через диод к току в максиме ВАX; I мин -ток в минимуме ВАX (отнесённый к I макс); U макс и U мин -напряжения смещения, соответствующие токам I макс и I мин; I т -туннельный ток; I д -диффузионный (тепловой) ток .



Рис. 2. Энергетические диаграммы p-n -перехода туннельного диода при различных напряжениях сме щения (U 1 и U 2 - прямые смещения, U 3 - обратное смещение);-верхняя граница валентной зоны; -нижняя граница зоны проводимости; - уровни Ферми дырок и электронов; -ширина запрещённой зоны; W -ширина p- n -перехода; I , и I д - туннельный и диффузионный токи; е - заряд электрона .

В большой семье полупроводниковых приборов имеется группа приборов, у которых на определенном участке вольт-амперной характеристики увеличение напряжения (ΔU > 0) сопровождается не ростом, а падением силы тока (ΔI

Наиболее распространенными и, пожалуй, наиболее интересными из всех приборов с отрицательным сопротивлением являются туннельные диоды. Идея использования туннельного эффекта для создания полупроводникового диода была высказана советскими учеными Я. И. Френкелем и А. Ф. Иоффе еще в 1932 году, но только в 1958 году японским инженером Л. Есаки был создан туннельный диод.

Изготовление туннельных диодов . Как и обычные выпрямительные диоды, туннельный диод может быть получен путем вплавления кусочка металла в пластинку полупроводника, например индия в германий n-типа. Иначе говоря, и для создания туннельного диода необходимо получить p-n-переход. Однако в отличие от изготовления обычных диодов для получения туннельного диода нужно использовать в качестве подложки полупроводник с очень высокой степенью легированности, то есть с очень высокой концентрацией примеси. Если в обычных диодах концентрация примесей в полупроводнике, как правило, не превышает 10 17 см -3 , то концентрация легирующей примеси в полупроводниках, используемых для создания туннельных диодов по порядку величины, равна 10 19 -10 20 см -3 .

Особенности p-n-перехода между вырожденными полупроводниками . Полупроводники с такой концентрацией примеси, как мы уже видели ранее, являются вырожденными: у них уровни Ферми располагаются в области разрешенных зон (в вырожденном полупроводнике n-типа уровень Ферми лежит в области зоны проводимости, а в вырожденном полупроводнике р-типа - в области валентной зоны). Такое расположение уровней Ферми приводит к возникновению в контакте между вырожденными полупроводниками большой контактной разности потенциалов, превышающей почти вдвое значение контактной разности потенциалов в обычных диодах. Так как в туннельных диодах уровни Ферми лежат вне пределов запрещенной зоны, то у них потенциальный барьер на границе перехода всегда больше ширины запрещенной зоны. На рисунке 77, а приведена зонная схема двух высоколегированных вырожденных полупроводников (n-типа и p-типа) до контакта, а на рисунке 77, б - зонная схема p-n-перехода, образовавшегося после приведения полупроводников в контакт. Из рисунка 77, б видно, что при установлении равновесия между вырожденными n- и р-областями происходит перекрытие зон по внешней шкале энергии: дно зоны проводимости n-полупроводника располагается ниже потолка валентной зоны полупроводника p-типа. Таким образом, электроны, находящиеся, например, вблизи уровня Ферми в n- и p-областях, имеют одну и ту же энергию и переходу их из одной области в другую препятствует лишь зона запрещенных энергий, являющаяся для них некоторым потенциальным барьером.


Отличительной особенностью p-n-перехода между вырожденными полупроводниками является также его крайне малая толщина d - порядка 10 -6 см. Дело в том, что благодаря высокой плотности свободных носителей их уход даже из небольшого пограничного слоя связан с образованием большого числа нескомпенсированных заряженных донорных и акцепторных примесных центров, достаточного для возникновения равновесного потенциального барьера.

Туннельные переходы электронов в состоянии равновесия . Чрезвычайно малая толщина p-n-перехода в совокупности с перекрытием зон, благодаря которому по обе стороны перехода имеются области с одинаковыми разрешенными энергиями, создают благоприятные условия для туннельных переходов: электроны из зоны проводимости n-области переходят в валентную зону p-области, а электроны из валентной зоны p-области переходят в зону проводимости n-области (см. рис. 77, б). Конечно, для туннельного перехода электрона через барьер из одной области полупроводника в другую необходимо, чтобы по ту сторону барьера, куда переходит электрон, имелись свободные состояния. Но ведь уровень Ферми как раз тем и характеризуется, что вероятность его заполнения равна всего 72. Поэтому для электронов, имеющих энергию, не слишком отличающуюся от энергии Ферми, всегда найдется место за потенциальным барьером p-n-перехода.

При равновесии в отсутствие напряжения смещения число туннельных переходов электронов слева направо равно числу встречных переходов справа налево и суммарный туннельный ток равен нулю. Помимо туннельных переходов, в рассматриваемом диоде, конечно, существуют и надбарьерные переходы основных и неосновных носителей, создающих диффузионный ток и ток проводимости. Но, во-первых, в условиях равновесия и эти токи оказываются одинаковыми и направленными навстречу друг другу, так что в сумме они не дают тока. А во-вторых, в сравнении с числом туннельных переходов число надбарьерных переходов оказывается пренебрежимо малым. Итак, в отсутствие внешнего смещения ток через диод равен нулю, что соответствует началу координат на кривой вольт-амперной характеристики прибора (точка 1 на рисунке 78).

Поведение туннельного диода при подаче прямого напряжения смещения . Если на диод подать небольшое положительное смещение, то произойдет некоторое смещение энергетических зон, в результате чего потенциальный барьер на границе перехода немного понизится и незаполненная часть валентной зоны полупроводника p-типа разместится напротив заполненной области зоны проводимости n-полупроводника (рис. 79, а). При этом равновесие между туннельными переходами электронов слева направо и справа налево нарушится. Действительно, в области перекрытия заполненных частей зон указанные переходы компенсируют друг друга (пунктирные стрелки на рисунке), но переходы из верхней области заполненной части зоны проводимости n-полупроводника (жирная стрелка) уже не встречают встречного компенсирующего потока, так как расположенная напротив область валентной зоны p-полупроводника практически пуста. Возникающий нескомпенсированный поток электронов из полупроводника n-типа в полупроводник p-типа приводит к появлению прямого тока через диод (точка 2 на кривой рисунка 78).


Повышение положительного смещения приводит к все большему перекрытию заполненной области зоны проводимости n-полупроводника с пустой областью валентной зоны полупроводника p-типа, благодаря чему растет и туннельный ток через диод. Максимального значения (точка 3 на рисунке 78) он достигает тогда, когда уровень Ферми n-полупроводника располагается напротив потолка валентной зоны р-области (рис. 79, б).

Дальнейшее повышение прямого напряжения сопровождается уже уменьшением перекрытия заполненной части зоны проводимости полупроводника n-типа и пустой части валентной зоны р-полупроводника, а значит, и ухудшением условий для переходов электронов из n-области в p-область (рис. 79, в). Электронам, расположенным в верхней части заполненной области зоны проводимости n-полупроводника, теперь противостоит зона запрещенных энергий р-полупроводника, из-за чего их переход в p-область становится невозможным. Таким образом, мы приходим к парадоксальному, на первый взгляд, явлению: увеличение разности потенциалов, приложенной к прибору в прямом направлении, сопровождается не увеличением, а уменьшением протекающего через него тока (точка 4 на рисунке 78). На вольт-амперной характеристике диода появляется падающий участок, которому соответствует отрицательное сопротивление.

Уменьшение туннельного тока по мере роста приложенного прямого напряжения будет продолжаться и дальше вплоть до момента, когда дно зоны проводимости полупроводника n-типа окажется на одном уровне с потолком валентной зоны р-полупроводника (рис. 79, г). Туннельные переходы в такой ситуации становятся принципиально невозможными, и туннельный ток падает до нуля (точка 5 на рисунке 78).

Однако, как видно из хода вольт-амперной характеристики (см. рис. 78), ток через диод не только не исчезает, но даже начинает расти по мере увеличения прямого напряжения. Объясняется это тем, что большое прямое напряжение смещения приводит к заметному снижению потенциального барьера на границе перехода. Благодаря этому увеличивается вероятность надбарьерного перехода носителей через границу раздела, то есть появляется возможность для надбарьерной инжекции электронов из n-полупроводника и дырок из р-области (см. рис. 79, г). Возникающий диффузионный ток, как и у обычных диодов, растет по мере увеличения прямого напряжения, все более снижающего потенциальный барьер на границе p-n-перехода (восходящий участок характеристики с точкой 6).

Поведение туннельного диода при подаче обратного напряжения смещения . При включении обратного смещения преимущественными оказываются туннельные переходы электронов из валентной области p-полупроводника в зону проводимости полупроводника n-типа (на рисунке 80 - справа налево). Переходы эти оказываются ничем не ограниченными, и число их растет по мере увеличения обратного напряжения. Этим и объясняется быстрый рост обратного тока через диод (см. на рисунке 78 участок вольт-амперной характеристики с точкой 7).

Генерирование незатухающих колебаний с помощью туннельного диода . Проиллюстрируем применение туннельных диодов на примере генерирования незатухающих колебаний. Используя отрицательное сопротивление туннельного диода, можно скомпенсировать положительное активное сопротивление какого-либо определенного участка электрической цепи и обеспечить усиление сигнала или генерацию колебаний. Так, если рабочая точка туннельного диода, включенного в цепь постоянного тока последовательно с колебательным контуром (рис. 81), находится на падающем участке вольт-амперной характеристики, то происходит восполнение потерь энергии в колебательном контуре и в нем возникают незатухающие колебания.

При замыкании ключа K в колебательном контуре возникают свободные колебания с малой амплитудой, которые в отсутствие туннельного диода вскоре бы затухли. Установим напряжение питания U схемы таким, чтобы рабочая точка диода находилась посередине участка отрицательного сопротивления вольт-амперной характеристики. В процессе электрических колебаний в контуре, возникающих после замыкания цепи, полярность точек А и В будет каждые полпериода меняться. Во время одного из полупериодов полярность этих точек окажется такой, как указано на рисунке. В этом случае напряжение, имеющееся на контуре, вычитается из напряжения питания, и общее напряжение прямого смещения на диоде уменьшается. Так как диод в выбранном нами режиме работает на участке отрицательного сопротивления, то уменьшение прямого напряжения смещения вызовет возрастание тока через диод, а следовательно, и во всей цепи. Когда же полярность зажимов контура (во время второго полупериода) станет противоположной, напряжение прямого смещения увеличится, а сила тока в цепи станет меньшей. Таким образом ток в цепи будет пульсирующим. Легко сообразить, что переменная составляющая этого тока совпадает по фазе с колебаниями напряжения на контуре. Это значит, что мощность электрического тока на участке цепи, образованном колебательным контуром, положительна (cos φ = 1) и имеет место непрерывное пополнение энергии в контур. За счет этого амплитуда колебаний в контуре увеличивается. Одновременно растут и потери энергии. Когда наступает равновесие между потерями энергии и ее пополнением, в контуре устанавливаются незатухающие колебания.

Как видно из схемы, генератор незатухающих электрических колебаний на туннельном диоде по своему устройству значительно проще лампового генератора.

В последнее время туннельные диоды нашли широкое применение в электронных вычислительных устройствах и других радиоэлектронных системах, требующих высокого быстродействия. Такое использование туннельных диодов объясняется их исключительно малой инерционностью (туннельный переход электронов через потенциальный барьер происходит всего за 10 -12 -10 -14 с). Малая инерционность туннельных диодов позволяет применять их для генерирования и усиления колебаний сверхвысоких частот (вплоть до сотен гигагерц).

Туннельные диоды используются также в качестве быстродействующих переключателей (время переключения может быть доведена до 10 -9 с). В электрической цепи туннельный диод работает как вентиль, который при уменьшении напряжения прямого смещения открывается, а при увеличении этого смещения закрывается.

Обращенные диоды . Интересной разновидностью туннельных диодов являются так называемые обращенные диоды. Для их создания используются полупроводники с несколько меньшей степенью легированности, чем в случае обычных туннельных диодов (концентрация примеси, вводимой в полупроводник в этом случае, составляет примерно 10 18 см -3). В таких полупроводниках уровни Ферми совпадают с границами разрешенных зон: в n-полупроводнике уровень Ферми совпадает с дном зоны проводимости, а в p-полупроводнике - с потолком валентной зоны. Если рассмотреть контакт таких полупроводников, находящийся в равновесном состоянии, то окажется, что перекрытия энергетических зон не происходит (рис. 82). Поэтому и туннельных переходов через границу раздела областей в отсутствие внешнего напряжения смещения нет. Не появляются они и при наличии прямого напряжения смещения, так как и в этом случае разрешенным энергиям электронов в одной области противостоит зона запрещенных энергий в другой области. По этой причине прямой ток в диоде может быть обусловлен только надбарьерными переходами носителей. А поскольку потенциальный барьер на границе столь высоко легированных полупроводников достаточно велик (как видно из рисунка, он равен ширине запрещенной зоны полупроводника), то и сила прямого тока вплоть до весьма больших значений прямого напряжения смещения оказывается ничтожной (рис. 83). Практически она равна значению диффузионного тока, характерного для туннельных диодов вообще (пунктирная линия на рисунке 78).

Подача же на диод внешнего напряжения в обратном направлении приводит к появлению перекрытия разрешенных зон, которое с увеличением этого напряжения растет. При этом появляется возможность для туннельных переходов, число которых неограниченно увеличивается с ростом U обр, как и в обычных туннельных диодах, из-за чего сила тока в запорном направлении также быстро растет и становится несравненно большей силы тока в прямом направлении. Следовательно, в отношении зависимости проводимости от напряжения смещения свойства таких диодов противоположны свойствам обычных выпрямительных диодов, из-за чего эти диоды получили название обращенных. Они не имеют участка отрицательного сопротивления и поэтому не могут быть использованы для генерирования и усиления колебаний, но применяются в качестве детекторов в области очень высоких частот.

При увеличении прямого напряжения монотонно увеличивают пропускаемый ток. В туннельном диоде квантово-механическое туннелирование электронов добавляет прогиб в ВАХ , при этом из-за высокой степени легирования p- и n-областей напряжение пробоя уменьшается практически до нуля. Туннельный эффект позволяет электронам преодолеть энергетический барьер в зоне перехода с шириной 50-150 Å при таких напряжениях, когда зона проводимости в n-области имеет равные энергетические уровни с валентной зоной р-области. При дальнейшем увеличении прямого напряжения уровень Ферми n-области поднимается относительно р-области, попадая на запрещённую зону р-области, а поскольку туннелирование не может изменить полную энергию электрона , вероятность перехода электрона из n-области в p-область резко падает. Это создаёт на прямом участке ВАХ участок, где увеличение прямого напряжения сопровождается уменьшением силы тока. Данная область отрицательного дифференциального сопротивления и используется для усиления слабых сверхвысокочастотных сигналов.

История изобретения

В начале 1920-х годов в России Олег Лосев обнаружил кристадинный эффект в диодах из кристаллического ZnO, выращенного гидротермально из водного раствора гидроксида цинка и цинката калия - эффект отрицательного дифференциального сопротивления. Механизм возникновения отрицательного дифференциального сопротивления в опытах Лосева неясен. Большинство специалистов предполагают, что он вызван туннельным эффектом в полупроводнике, но прямых экспериментальных подтверждений этого объяснения пока не получено . В то же время, возможным механизмом эффекта может быть лавинный пробой или другие физические эффекты , приводящие к возникновению отрицательного дифференциального сопротивления. При этом кристадин и туннельный диод это разные устройства, и отрицательное дифференциальное сопротивление у них проявляется на разных участках ВАХ.

Впервые туннельный диод был изготовлен на основе в 1957 году Лео Эсаки , который в 1973 году получил Нобелевскую премию по физике за экспериментальное обнаружение эффекта туннелирования электронов в этих диодах.

Применение

Наибольшее распространение на практике получили туннельные диоды из , GaAs , а также из