Что можно измерить осциллографом. Электронный осциллограф - устройство, принцип работы

В статье будет подробно рассказано о том, как пользоваться осциллографом, что это такое и для каких целей он необходим. Никакая лаборатория не может просуществовать без измерительной аппаратуры или источников сигналов, напряжений и токов. А если вы планируете заниматься проектированием и созданием различных устройств (особенно если речь идет о высокочастотной технике, например, инверторных блоках питания), то без осциллографа сделать что-либо окажется проблематично.

Что такое осциллограф

Это такой прибор, который позволяет «увидеть» напряжение, а если точнее, то его форму в течение определенного промежутка времени. С его помощью можно измерить немало параметров - напряжение, частоту, силу тока, углы сдвигов фаз. Но чем хорош особенно этот прибор, так это тем, что он позволяет визуально оценить форму сигнала. Ведь в большинстве случаев именно она говорит о том, что конкретно происходит в цепи, в которой проводится измерение.

В некоторых случаях, например, напряжение может содержать не только постоянную, но и переменную составляющую. И форма второй может быть далека от идеальной синусоиды. Такой сигнал вольтметры, например, воспринимают с большими погрешностями. Стрелочные приборы будут выдавать одно значение, цифровые - намного меньшее, а вольтметры постоянного тока в - несколько раз больше. Самое точное измерение получается провести именно при помощи описываемого в статье прибора. И не имеет значения, применяется ли осциллограф Н3013 (как пользоваться, рассмотрено ниже) либо иной модели. Измерения происходят одинаково.

Особенности прибора


Реализовать это довольно просто - необходимо ко входу усилителя подключить конденсатор. В данном случае вход закрыт. Обратите внимание на то, что в этом режиме измерения НЧ-сигналы с частотой менее 5 Гц ослабевают. Следовательно, измерять их можно лишь в режиме открытого входа.

Когда переключатель установлен в среднее положение, то от разъема входа отключается усилитель, и происходит замыкание на корпус. Благодаря этому имеется возможность установить развертку. Так как пользоваться осциллографом С1-49 и аналогами без знания основных органов управления невозможно, стоит о них более подробно поговорить.

Вход канала осциллографа


На передней панели имеется масштаб в вертикальной плоскости - он определяется при помощи регулятора чувствительности того канала, по которому происходит измерение. Существует возможность сменить масштаб не плавно, а ступенчато, при помощи переключателя. Какие задать значения можно с его помощью, смотрите на корпусе рядом с ним. На одной оси с этим переключателем находится регулятор для плавной корректировки (вот как пользоваться осциллографом С1-73 и аналогичными моделями).

На передней панели можно найти ручку с изображением двунаправленной стрелки. Если вращать ее, то график этого канала начнет перемещаться в вертикальной плоскости (вниз-вверх). Обратите внимание на то, что возле этой ручки имеется графическое обозначение, которое показывает, в какую сторону необходимо ее вращать, чтобы изменить значение множителя в меньшую или большую сторону. обоих каналов одинаковые. Кроме того, на передней панели имеются ручки регулировки контрастности, яркости, синхронизации. Стоит отметить, что цифровой карманный осциллограф (как пользоваться девайсом, мы рассматриваем) также имеет ряд настроек отображения графиков.

Как проводятся измерения

Продолжаем описывать, как пользоваться цифровым осциллографом или аналоговым. Важно отметить, что у них у всех есть недостаток. Стоит упомянуть одну особенность - все измерения осуществляются визуально, поэтому имеется риск того, что погрешность окажется высокой. Также следует учитывать тот факт, что напряжения развертки обладают крайне малой линейностью, что приводит к сдвига фаз или частоты примерно на 5%. Чтобы минимизировать эти погрешности, требуется выполнить одно простое условие - график должен занимать примерно 90% площади экрана. Когда проводятся измерения частоты и напряжения (имеется временной интервал), следует регуляторы корректировки усиления сигнала на входе и скорости развертки выставить в крайние правые положения. Стоит заметить одну особенность: так как пользоваться цифровым осциллографом может даже новичок, приборы с электронно-лучевой трубкой потеряли актуальность.

Как измерить напряжение


Чтобы провести измерение напряжения, необходимо использовать значения масштаба в вертикальной плоскости. Для начала нужно выполнить одно из этих действий:

  1. Соединить обе входные клеммы осциллографа между собой.
  2. Перевести переключатель режимов входа в положение, которое соответствует соединению с общим проводом. Затем регулятором, возле которого изображена двунаправленная стрелка, добиться того, чтобы линия развертки совпала с центральной (горизонтальной) чертой на экране.

Переводите прибор в режим измерений и подаете на вход сигнал, который необходимо исследовать. При этом в какое-либо рабочее положение устанавливается переключатель режимов. А вот как пользоваться портативным цифровым осциллографом? Немного сложнее - у таких приборов намного больше регулировок.

В результате можно видеть на экране некоторый график. Для точного измерения высоты следует использовать ручку с изображением горизонтальной двунаправленной стрелки. Добиваетесь того, чтобы верхняя точка графика попадала на вертикальную линию, расположенную в центре. На ней имеется градуировка, поэтому будет намного проще произвести расчет действующего напряжения в цепи.

Как измерить частоту


При помощи осциллографа можно провести измерения временных интервалов, в частности, периода сигнала. Вы понимаете, что частота любого сигнала всегда пропорциональна периоду. Измерение периода можно провести в любой области осциллограммы. Но удобнее и точнее провести замер в тех точках, в которых график пересекается с горизонтальной осью. Следовательно, перед началом измерений обязательно установите развертку четко на горизонтальную линию, расположенную по центру. Так как пользоваться портативным цифровым осциллографом намного проще, нежели аналоговым, последние давно канули в лету и редко используются для измерений.

Далее, используя рукоятку, обозначенную горизонтальной двунаправленной стрелкой, необходимо сместить начало периода с крайней левой линией на экране. После вычисления периода сигнала можно, используя простую формулу, рассчитать частоту. Для этого нужно единицу разделить на вычисленный ранее период. Точность измерений бывает различной. Чтобы увеличить ее, необходимо как можно сильнее растягивать график по горизонтали.

Обратите внимание на одну закономерность: при увеличении периода уменьшается частота (пропорция ведь обратная). И наоборот - при уменьшении периода происходит увеличение частоты. Низкое значение погрешности - это когда она составляет менее 1 процента. Но такую высокую точность не каждый осциллограф способен обеспечить. Только на цифровых, в которых линейная развертка, можно получить такие точные измерения.

Как определяется сдвиг фаз


А теперь о том, как пользоваться осциллографом С1-112А для измерения сдвига фаз. Но для начала - определение. Сдвиг фаз - это характеристика, показывающая, как располагаются относительно друг друга два процесса (колебательных) в течение некоторого времени. Причем измерение происходит не в секундах, а в частях периода. Другими словами, единица измерения - это единицы угла. Если сигналы будут одинаково располагаться взаимно, то у них сдвиг фаз будет также одинаков. Причем это не зависит от частоты и периода - реальный масштаб графиков на горизонтальной (временной) оси может быть любым.

Максимальная точность измерения будет в том случае, если растянуть график на всю длину экрана. В аналоговых осциллографах график сигнала для каждого канала будет иметь одну яркость и цвет. Чтобы отличить эти графики друг от друга, необходимо сделать для каждого свою амплитуду. И напряжение, которое подается на первый канал, важно делать максимально большим. При этом получится намного лучше удерживать синхронизацией изображение на экране. Вот как пользоваться осциллографом С1-112А. Другие приборы отличаются в эксплуатации незначительно.

Осциллограф - прибор, используемый для наблюдения формы сигнала напряжения. Думаю,ни для кого не секрет, что у меня на столе залежался еще старенький венгерский осцилл. Купил я его как то еще на форуме у одного мужичка, с тех пор он мне служит верой и правдой.

Ну вот, настал тот день и час, когда нужно показать как он работает моим дорогим читателям:-). До сих пор самыми надежными и точными осциллами считаются аналоговые осциллы с электронно-лучевой трубкой. Сколько не хвалят цифровые осциллографы, но нет милее и точнее простого аналогового. Осцилл состоит, как я уже сказал, из электронно-лучевой трубки (тот же самый кинескоп вашего ТВ, у кого они еще, конечно, есть), различных крутилок, а также из щупа

Если у мультиметра щуп состоит из простого провода, то щуп осцилла состоит кабеля. А в кабеле два провода-щупа, которые в конце разветвляются. Этот кабель способен измерять восокочастотные напряжения без помех. Пипочка посередине - это сигнальный щуп, а экран - это щуп масса или земля. Электронщики по разному его называют, но я привык так. На конце щупа зажим белый крокодильчик - это земля, а сигнальный - с иголочкой.

Подключаем кабель в разъем, у меня их два, на разных осциллах их может быть разное количество. Это зависит от крутизны осцилла. Так вот, подключаем, запускаем осцилл кнопочкой "Пуск", даем прогрется, ловим линию, и с помощью крутилок выставляем ее посередине. Крутилки на моем осцилле с белым кружочком наверху. А снизу этих крутилок на той же оське щелкунчики. Слева с белым кружочком крутилка по Х координате и щелкунчик по временной развертке, справа крутилки по У координате и щелкунчик по амплитуде напряжения. Осциллограф показывает напряжение во времени.

Бывает ситуация, когда надо определить сигнальный провод, для этого берем один из проводов, касаемся пальцем и смотрим на дисплей осцилла. Если сигнал не исказился - это земля. Если исказился - это сигнальный. На фото ниже пример определения сигнального провода.

Осциллографом мы можем измерять только форму напряжения, ток измерять напрямую не можем! Если только косвенно, используя Закон Ома . Для того, чтобы измерить величину напряжения постоянного тока, нам понадобиться источник постоянного напряжения. Это может быть простая батарейка или блок питания. В моем случае - это Блок питания . Для наглядности выставляем 1 Вольт.

Единица измерения осцилла - сторона квадратика на дисплее. Для того, чтобы измерять в масштабе 1:1, мы ставим щелкунчик по У на 1.

Цепляемся землей на "минус" блока питания, сигнальным на "плюс" блока питания. Видим такю картину:

Линия сдвинулась вверх на 1 квадратик. Это значит, что во времени сигнал с блока питания все время 1 Вольт.

А как же измерить сигналы, которые скажем 100 Вольт? Для этого и придуман щелкунчик по У:-). Оставляем на блоке питания 1 Вольт и щелкаем на риску "2".

Что это значит? Это значит, что полученный сигнал на дисплее осцилла надо тупо умножить на 2.

А вот и сигнал на дисплее осцилла:

На осцилле мы видим значение по У=0,5. Умножаем это значение на то, которое на риске осцилла и получаем искомое значение. То есть 2х0,5=1 Вольт.

А вот такой будет сигнал, если мы поставим щелкунчик на 5. 5х0,2=1 Вольт.

Как мы видим, с этой задачей может справиться обыкновенный Мультиметр.

Если же прикладываем щупы наоборот, то ничего страшного не происходит. Например, выставляем 2 Вольта на блоке питания. Земля осцилла к "плюсу" блока, а сигнальный к "минусу" блока - то есть все подцеплено наоборот. Линия у нас просто ушла вниз, но от этого ничего не меняется. 2 Вольта как есть, так и осталось.

А вот для практики, как я уже говорил, требуется знать форму сигнала. В элетронике используются на 90 % периодические сигналы. Это значит, что они повторяются через какой-то промежуток времени. Очень часто нужно узнать период и частоту переменного сигнала. Для этого и используется наш электронно-лучевой приборчик.

Для того, чтобы не спалить осцилл, я взял трансформатор. Благодаря хорошему трансу, на выходе у меня амплитуда напряжения (это значит от нуля и до самого верхнего или нижнего пика) в пределах 1,5 Вольта, а заходит в транс напруга 220 Вольт.

Цепляемся ко вторичной обмотке транса щупами осцилла и выводим показания на дисплей.

Какая то хреновая синусоида. В идеале нам должна доставляться в розетки чистая синусоида. Россия, что ж еще сказать))). Ну и ладно. Думаю в Ваш дом в розетку идет синусоида почище моей:-). В периодическом сигнале нам важны такие параметры, как частота сигнала и его форма. Поэтому, чтобы определить частоту, мы должны знать период. T - период, V - частота. Они взаимосвязаны.

Определим период сигнала. Период - это время, через которое сигнал опять повторяется. Проще измерять от пика до пика.



Считаем сторны квадратиков по Х. Я насчитал 4 стороны квадратика, а Вы?.

Далее смотрим на крутилку, по Х, которая у нас отвечает за временную развертку. Риска стоит на 5. Сверху написна цена этого деления - msec/div . То есть получается 5 миллисекунд на одну сторону квадратика.

Милли - это тысяча. Следовательно 0,005 сек. Это значение умножаем на наши сосчитанные стороны квадратов. 0,005х4=0,02. То сть один период у нас длится 0,02 сек или 20 милисекунд. Зная период, находим по формуле выше частоту сигнала. V= 1/0,02=50 Гц. Частота напряжения в нашей розетке 50 Гц, что и требовалось доказать.

В настоящее время я себе купил уже цифровой осциллограф



С ним работать одно удовольствие, поэтому тот электронно-лучевой унес на работу. Подробнее про цифровой осцил вы можете прочитать ниже по ссылке.


На монитор нанесены деления. Деления позволяют визуально оценить параметры сигнала. Деления, нанесённые по горизонтальной оси, позволяют измерять временные параметры. Деления, нанесённые по вертикальной оси, позволяют измерять напряжение.

Графики, отображаемые на мониторе, называют осциллограммами. Самый простой осциллограф отображает только осциллограммы напряжений. Эта форма отображения показывает зависимость напряжения от времени. Существуют приборы, отображающие зависимость амплитуды от частоты – спектроанализаторы. Такие приборы используются при измерениях уровней шума/вибрации, а так же при анализе спектрального состава сигнала. Графики, отображаемые такими приборами, называются спектрограммами.

Путём просмотра осциллограмм напряжений и спектрограмм можно выявить неисправности в электрических цепях в рабочем режиме без их разборки. По осциллограммам напряжений можно выявить неисправности датчиков, исполнительных механизмов и электропроводки в электронных системах автомобилей.


Нулевая линия.

Если к входу осциллографа не подключать никакого источника напряжения, то осциллограмма будет выглядеть как ровная горизонтальная линия. Такую линию называют "нулевая линия", так как она отображает уровень, соответствующий напряжению равному 0 Вольт на входе осциллографа.


A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует напряжению нулевой линии, что составляет 0 Вольт.

Если вход осциллографа подключить к источнику постоянного напряжения, например к автомобильной аккумуляторной батарее, то полученная осциллограмма так же будет иметь форму ровной горизонтальной линии, но её положение по вертикали на экране будет отличаться от положения нулевой линии.


A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует напряжению автомобильной аккумуляторной батареи и равно ~12,3 Вольт.

Разность между положениями полученной осциллограммы и нулевой линии прямо пропорционально значению напряжения.

Большинство осциллограмм напряжений сигналов имеют форму отличную от ровной горизонтальной линии. Положение нулевой линии на экране осциллографа можно изменять по вертикали – поднять выше или опустить ниже. Необходимость изменения положения нулевой линии (выше или ниже) зависит от формы исследуемого сигнала, а так же возникает в случае использования многоканального осциллографа.



Пример вывода на экран многоканального осциллографа нескольких сигналов одновременно с индивидуальной настройкой положения нулевой линии для каждого канала.


Усиление.

График на экране осциллографа отображает зависимость значения напряжения от времени. Чем большая амплитуда исследуемого сигнала, тем большее на экране осциллографа вертикальное отклонение сигнала. В зависимости от амплитуды, для наглядности отображения сигнала выбирают подходящее усиление. Значение усиления измеряется в Вольтах на деление

Возможность изменения значения усиления позволяет на экране осциллографа отображать как сигналы с очень малой амплитудой напряжения, так и сигналы с очень большой амплитудой напряжения. Необходимое значение усиления зависит от амплитудных параметров исследуемого сигнала.

Один и тот же сигнал будет отображаться по-разному, в зависимости от выбранного значения усиления. Большее значение Вольт/деление выбирают тогда, когда на экране нужно отобразить весь сигнал по амплитуде.



Меньшее значение Вольт/деление выбирают тогда, когда нужно детально исследовать форму и амплитудные параметры отдельных участков сигнала. В таком случае на экране отображается только часть сигнала по амплитуде.



Приведённые примеры демонстрируют, как изменяется отображение осциллограммы одного и того же сигнала на экране осциллографа при изменении значения усиления.


Развёртка.

Осциллограф прорисовывает график напряжения слева направо, начиная с левой стороны экрана. Скорость, прорисовки графика называется развёрткой. Развёртка измеряется в Секундах на деление. Значение развёртки можно изменять с помощью переключателя время/деление.

Один и тот же сигнал будет отображаться по-разному, в зависимости от выбранного значения развёртки. Меньшее время/деление выбирают тогда, когда нужно детально исследовать форму и временные параметры отдельных участков сигнала. В таком случае на экране отображается более короткий по времени фрагмент сигнала.



Осциллограмма напряжения сигнала управления форсункой при меньшем значении развёртки. В данном случае выбрана развёртка 0,2 милли Секунды/деление.

В случае если на экране необходимо отобразить больший по времени фрагмент осциллограммы, например для выявления отдельных импульсов с неправильной формой сигнала либо пропуски импульсов, выбирают большее время/деление.



Осциллограмма напряжения сигнала управления форсункой при большем значении развёртки. В данном случае выбрана развёртка 1 милли Секунда/деление.

Приведённые примеры демонстрируют, как изменяется отображение осциллограммы одного и того же сигнала на экране осциллографа при изменении значения развёртки.


Синхронизация.

Для удобного и наглядного отображения периодичных (циклично повторяющихся) сигналов применяется синхронизация. Синхронизация обеспечивает прорисовку отдельных импульсов, начиная всегда с одной и той же точки экрана, благодаря чему создаётся эффект неподвижного или относительно стабильного изображения. В случае выключенной синхронизации, осциллограф прорисовывает график напряжения слева направо, начиная с крайней левой стороны экрана до тех пор, пока экран не заполнится на всю ширину, после чего прорисовка снова начинается с крайней левой стороны экрана, что неудобно для отображения относительно быстрых периодичных сигналов.

Для настройки синхронизации необходимо выбрать уровень синхронизации (значение напряжения, по достижении которого осциллограф начинает прорисовывать осциллограмму) и фронт сигнала (спадающее или возрастающее напряжение).



В случае если применяется многоканальный осциллограф, необходимо так же указать, по сигналу какого канала осуществлять синхронизацию.


Аналоговый сигнал.

Значение напряжения большинства аналоговых сигналов изменяется во времени. Если изменения циклически повторяются, то такой сигнал называют периодичным, например сигнал управления форсункой. Если осциллограмма напряжения периодичного сигнала пересекает нулевую линию, то такой сигнал называют переменным. Если осциллограмма напряжения периодичного сигнала не пересекает нулевой линии, то такой сигнал называют постоянным. В качестве примера сложного аналогового сигнала постоянного тока можно привести сигнал лямбда-зонда.



Осциллограмма выходного напряжения лямбда-зонда BOSCH
(на основе оксида циркония).
A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует максимальному напряжению выходного сигнала лямбда-зонда и равно ~840 милли Вольт;
A-B: – значение разности напряжений между двумя указанными маркерами моментами времени. В данном случае соответствует размаху выходного напряжения сигнала зонда и составляет ~740 милли Вольт.


Синусоидальный сигнал.

Самым простым примером переменного аналогового напряжения является синусоида. Такой сигнал характеризуется только двумя параметрами – амплитуда и частота. Нулевая линия синусоидального переменного напряжения располагается ровно посередине сигнала.

Необходимо отметить, что большинство сигналов переменного напряжения значительно отличаются от чистого синусоидального. В автомобильной электронике близкими к синусоидальному являются сигналы, сгенерированные магнитными датчиками положения зубчатых колёс.


A: – значение напряжения в момент времени указанный маркером;
A-B: – значение разности напряжений между двумя указанными маркерами моментами времени.

Подобные сигналы генерируют некоторые датчики скорости вращения коленчатого вала, распределительного вала, скорости вращения колёс...


Цифровой сигнал.

Цифровые сигналы от аналоговых отличаются наличием только двух уровней напряжения – "высокий"/"низкий", "включено"/"выключено", "1"/"0". Такие уровни напряжений цифрового сигнала называются "логическими уровнями". В большинстве случаев, логические уровни цифрового сигнала имеют точные значения напряжения, например +5 Вольт и 0 Вольт.


A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует напряжению высокого уровня цифрового сигнала и составляет +5 Вольт.

Цифровые сигналы генерируются ключами (выключателями). Роль ключей выполняют транзисторы, переключающиеся между состояниями "открыт"/"закрыт". Иногда цифровые сигналы генерируются механическими ключами – механическими выключателями, переключателями, электромеханическими реле… Примерами цифровых сигналов автомобильной электронике могут служить датчик Холла, датчики крайних положений дроссельной заслонки, активные датчики положения/частоты вращения коленчатого/распределительного вала...

Но преимущественно, цифровые сигналы используются в вычислительной технике, в том числе и в цифровых блоках управления электронными системами автомобилей.


Частота.

Частота – это количество циклов периодичного сигнала, повторяющееся за определённый период времени. Если за такой период времени принять одну секунду, то количество циклов периодичного сигнала повторившееся за этот период времени называют Герц (Гц). В автомобильной электронике количество оборотов двигателя принято рассчитывать за период времени равный одной минуте (Об/мин).

По осциллограмме напряжения периодичного сигнала можно легко измерить частоту следования импульсов. Для этого необходимо измерить длительность полного цикла сигнала – период. Далее полученное значение временного промежутка можно пересчитать в частоту, воспользовавшись соответствующей формулой.

Рассчитаем частоту следования импульсов сигнала датчика положения коленчатого вала.



Датчик, осциллограмма напряжения выходного сигнала которого приведена выше, генерирует один импульс напряжения за один оборот коленчатого вала. Временной промежуток между двумя ближайшими такими импульсами называется периодом. В данном случае, два следующих один за другим импульса удалены друг от друга на 7,4 деления на экране осциллографа по горизонтали. Для отображения данного сигнала на экране выбрана развёртка (временной промежуток между каждым делением на экране осциллографа по горизонтали) 10 милли Секунд/деление, то есть 0,01 Секунды. Умножив количество делений соответствующее периоду на значение развёртки можно получить численное значение периода повторения сигнала в Секундах:

0,01*7,4=0,074 Секунд.

Зная значение длительности периода повторения сигнала, можно рассчитать, сколько таких периодов проследует за одну секунду, то есть частоту сигнала в Герцах. Для пересчёта периода в частоту, необходимо разделить выбранный временной промежуток (в данном случае 1 Секунда) на период повторения сигнала (для данного сигнала 0,074 Секунд):

1/0,074=13,5 Гц.

Если в данном случае рассчитать, сколько таких периодов проследует за одну минуту, то полученное значение будет соответствовать частоте вращения коленчатого вала в оборотах за минуту. Для пересчёта периода в частоту, необходимо разделить выбранный временной промежуток (в данном случае 60 Секунд) на период повторения сигнала (для данного сигнала 0,074 Секунд):

60/0,074=810 Об/мин.

Подобный расчет можно осуществить, располагая любым осциллографом, но некоторые осциллографы способны рассчитывать и отображать частоту сигнала в Герцах или в Оборотах за минуту в автоматическом или полуавтоматическом режиме.


RPM: – текущая частота вращения коленчатого вала двигателя в Оборотах за минуту.


Длительность импульса.

Длительность импульса – это временной промежуток, в течение которого сигнал находится в активном состоянии. Активное состояние – это уровень напряжения, который включает исполнительный механизм (приводит механизм в действие). В зависимости от схемы включения исполнительного механизма, активное состояние может иметь различные уровни напряжения, например 0 Вольт, +5 Вольт, +12 Вольт… Например, напряжение активного состояния сигнала управления электромагнитной форсункой в большинстве систем управления двигателем теоретически равно 0 Вольт, а практически может колебаться в диапазоне 0…+2,5 Вольт и более.


Impuls width: – длительность импульса.

Для приведённого выше сигнала, длительность импульса открытия форсунки составляет 4,4 деления на экране осциллографа по горизонтали, что при развёртке 1 милли Секунда/деление соответствует 4,4 милли Секунды.


Скважность.

Скважность – это процент времени от периода повторения, когда сигнал находится в активном состоянии. Скважность – один из параметров сигналов ШИМ (Широтно-Импульсная Модуляция).


Duty cycle: – скважность сигнала. Сигнал 67% времени находится в активном состоянии (в данном случае значение напряжения активного состояния сигнала составляет ~1 Вольт);
Frequency: – частота следования импульсов. В данном случае составляет ~100 Герц.

Сигналы ШИМ применяются для управления некоторыми исполнительными механизмами. Например, в некоторых системах управления двигателем сигналом ШИМ приводится в действие электромагнитный клапан холостого хода. Кроме того, сигнал ШИМ генерируют некоторые датчики, преобразовывая величину измеряемого физического параметра в скважность.


ЭДС самоиндукции.

ЭДС (Электро-Движущая Сила) самоиндукции – это напряжение, возникающее вследствие изменения значения величины магнитного поля и/или его направления вокруг электрического проводника. В случае высокой скорости изменения величины магнитного поля внутри соленоида (обмотка электромагнитного реле, электромагнитной форсунки, катушки зажигания, электромагнитного датчика частоты вращения) напряжение ЭДС самоиндукции может достигать десятков/тысяч Вольт. Величина напряжения ЭДС самоиндукции зависит в основном от индуктивности обмотки и скорости изменения величины магнитного поля. Для электромагнитных исполнительных механизмов, величина магнитного поля наиболее быстро изменяется при его разрушении, то есть при быстром отключении напряжения питания соленоида.

В некоторых случаях, эффект ЭДС самоиндукции нежелателен, и применяются меры для его уменьшения/устранения. Но некоторые электрические цепи спроектированы так, чтобы получить максимальный всплеск ЭДС самоиндукции, например, система зажигания бензинового двигателя.


A: – значение напряжения в момент времени указанный маркером. В данном случае соответствует напряжению ЭДС самоиндукции вторичной обмотки катушки зажигания ограниченному напряжением пробоя свечи зажигания и соответствует 8,3 кило Вольт.

Некоторые системы зажигания при напряжении питания 12 Вольт способны развивать напряжение ЭДС самоиндукции до 40-50 тысяч Вольт.

Вкратце было рассказано об этом универсальном приборе. Приведенных сведений достаточно для того, чтобы сделать процесс измерений осознанным, но в случае ремонта столь сложного прибора понадобятся более глубокие знания, ведь схемотехника электронных осциллографов весьма разнообразна и достаточно сложна.

Чаще всего в распоряжении начинающего радиолюбителя оказывается однолучевой осциллограф, но освоив приемы пользования таким прибором, не составит труда перейти на двухлучевой или цифровой осциллограф.

На рисунке 1 показан достаточно простой и надежный осциллограф С1-101, имеющий настолько малое количество ручек, что запутаться в них абсолютно невозможно. Обратите внимание, что это не какой-нибудь осциллограф для школьных уроков физики, именно таким пользовались на производстве всего лишь лет двадцать назад.

Питание осциллографа не только 220В. Возможно питание от источника постоянного тока 12В, например автомобильного аккумулятора, что позволяет пользоваться прибором в полевых условиях.

Рисунок 1. Осциллограф С1-101

Вспомогательные регулировки

На верхней панели осциллографа расположены ручки регулирования яркости и фокусировки луча. Их назначение понятно без объяснений. На передней панели находятся все остальные органы управления.

Два регулятора, обозначенные стрелками, позволяют регулировать положение луча по вертикали и горизонтали. Это позволяет более точно совмещать изображение сигнала на экране с координатной сеткой для улучшения отсчета делений.

Нулевой уровень напряжения находится на центральной линии вертикальной шкалы, что позволяет наблюдать двухполярный сигнал без постоянной составляющей.

Для исследования однополярного сигнала, например цифровых схем, луч лучше переместить на нижнее деление шкалы: получится одна вертикальная шкала из шести делений.

На передней панели находятся также тумблер включения питания и индикатор включения.

Усиление сигнала

Переключателем «V/дел» устанавливается чувствительность канала вертикального отклонения. Усиление канала Y калиброванное, изменяется с шагом 1, 2, 5, плавной регулировки чувствительности нет.

Вращением этого переключателя следует добиться, чтобы размах исследуемого импульса был не менее 1 деления вертикальной шкалы. Только тогда можно добиться устойчивой синхронизации сигнала. Вообще следует стремиться, получить размах сигнала по возможности больше, до тех пор, пока он не вышел за пределы координатной сетки. В таком случае точность измерений возрастает.

В общем случае рекомендация по выбору усиления может быть такой: выкрутить переключатель против часовой стрелки до положения 5V/дел, после чего вращать ручку по часовой стрелке до тех пор, пока размах сигнала на экране не станет таким, как было рекомендовано в предыдущем абзаце. Это как : если величина измеряемого напряжения неизвестна начинать измерения с самого высоковольтного диапазона.

Самое последнее по часовой стрелке положение переключателя чувствительности по вертикали обозначено черным треугольником с надписью «5ДЕЛ». В этом положении на экране возникают прямоугольные импульсы размахом 5 делений, частота импульсов 1 КГц. Назначение этих импульсов - проверка и калибровка осциллографа. В связи с этими импульсами вспоминается несколько комичный случай, который можно рассказать в качестве анекдота.

Пришел как-то к нам в мастерскую один товарищ и попросил воспользоваться осциллографом для налаживания какой-то самопальной конструкции. После нескольких дней творческих мучений слышим от него такой возглас: «Эх ты, и питание выключил, а импульсы-то какие хорошие!». Оказалось, что по незнанию он просто включил калибровочные импульсы, которые никакими ручками на передней панели не управляются.

Открытый и закрытый вход

Непосредственно под переключателем чувствительности находится трехпозиционный переключатель режимов работы, которые часто называют «открытый вход» и «закрытый». В крайнем левом положении этого переключателя возможно измерение постоянного и переменного напряжений с постоянной составляющей.

В правом положении вход усилителя вертикального отклонения включается через конденсатор, который не пропускает постоянную составляющую, зато можно увидеть переменную, даже если постоянная составляющая находится далеко от 0В.

В качестве примера использования закрытого входа можно привести такую распространенную практическую задачу, как измерение пульсаций источника питания: выходное напряжение источника 24В, а пульсации не должны превышать 0,25В.

Если предположить, что напряжение 24В при чувствительности канала вертикального отклонения 5В/дел. займет почти пять делений шкалы (ноль придется устанавливать на самую нижнюю линию вертикальной шкалы), то луч взлетит под самый верх, и пульсации в десятые доли вольта будут практически незаметны.

Чтобы точно измерить эти пульсации достаточно перевести осциллограф в режим закрытого входа, поместить луч в центр вертикальной шкалы и выбрать чувствительность 0,05 или 0,1В/дел. В таком режиме замер пульсаций будет достаточно точным. Следует заметить, что постоянная составляющая может быть достаточно большой: закрытый вход рассчитан на работу с постоянным напряжением до 300В.

В среднем положении переключателя измерительный щуп просто ОТКЛЮЧАЕТСЯ от входа усилителя Y, что дает возможность выставить положение луча, не отключая щуп от источника сигнала.

В некоторых ситуациях это свойство достаточно полезно. Самое интересное, что это положение отмечено на панели осциллографа значком общего провода, земли. Создается впечатление, что измерительный щуп соединяется с общим проводом. И что будет тогда?

В некоторых моделях осциллографов переключатель режима входа не имеет третьего положения, это просто кнопка или тумблер, переключающий режимы открытый/закрытый вход. Важно, что в любом случае такой переключатель есть.

Чтобы предварительно оценить работоспособность осциллографа достаточно коснуться пальцем сигнального (иногда говорят горячего) конца измерительного щупа: на экране должна появиться сетевая наводка в виде размытого луча. Если частота развертки близка к частоте сети, появится размытая, рваная и лохматая синусоида. При касании пальцем «земляного» конца наводок на экране, естественно, не будет.

Вот тут можно вспомнить один из способов проверки конденсаторов на обрыв: если взять в руку исправный конденсатор и коснуться им горячего конца, то на экране появится та же лохматая синусоида. Если конденсатор в обрыве, то никаких изменений на экране не произойдет.

Переключателем «Время/дел.» устанавливается длительность развертки. При наблюдении периодического сигнала вращением этого переключателя следует добиться, чтобы на экране показывался один или два периода сигнала.

Рисунок 2.

Ручка синхронизации развертки осциллографа С1-101 обозначена всего одним словом «Уровень». У осциллографа С1-73 дополнительно к этой ручке имеется ручка «стабильность» (некоторая особенность схемы развертки), у некоторых осциллографов эта же ручка называется просто «СИНХР». О пользовании этой ручкой следует рассказать несколько подробней.

Как добиться устойчивого изображения сигнала

При подключении к исследуемой цепи на экране чаще всего может появиться картинка, показанная на рисунке 3.

Рисунок 3.

Для того, чтобы получить устойчивое изображение следует покрутить ручку «Синхронизация», которая на лицевой панели осциллографа С1-101 обозначена как «Уровень». На разных осциллографах почему-то встречаются разные обозначения органов управления, но по сути дела это одна и та же ручка.


Рисунок 4. Синхронизация изображения

Чтобы из размытого изображения, показанного на рисунке 19 получить устойчивый сигнал достаточно покрутить ручку «СИНХР.» или в нашем случае «уровень». При вращении против часовой стрелки до знака «минус» на экране появится изображение сигнала, в данном случае синусоиды, показанное на рисунке 20а. Синхронизация начинается по падающему фронту сигнала.

При вращении той же ручки до знака «плюс» та же самая синусоида будет иметь вид, как на рисунке 4б: развертка запускается по восходящему фронту. Первый период синусоиды начинается чуть выше нулевой линии, это сказывается время запуска развертки.

Если осциллограф имеет линию задержки, то подобного пропадания не будет. Для синусоиды это, может быть, не особо заметно, а вот при исследовании прямоугольного импульса можно лишиться на изображении всего фронта импульса, что в ряде случаев достаточно важно. Особенно при работе с внешней разверткой.

Работа с внешней разверткой

Рядом с регулятором «УРОВЕНЬ» находится тумблер, обозначенный как «ВНЕШ/ВНУТР». В положении «ВНУТР» развертка запускается от исследуемого сигнала. Достаточно на вход Y подать исследуемый сигнал и покрутить ручку «УРОВЕНЬ» как на экране появится устойчивое изображение, как было показано на рисунке 4.

Если упомянутый тумблер установить в положение «ВНЕШ», то получить устойчивое изображение не удастся никаким вращением ручки «УРОВЕНЬ». Для этого надо подать сигнал, по которому будет синхронизироваться изображение на вход внешней синхронизации. Этот вход расположен на белой пластмассовой панели, расположенной справа от входа Y.

Там же расположены гнезда выхода пилообразного напряжения развертки (используется для управления различными ГКЧ), выход калибровочного напряжения (может использоваться в качестве генератора импульсов) и гнездо общего провода.

В качестве примера, где может потребоваться работа с внешней разверткой может послужить схема задержки импульса, показанная на рисунке 5.

Рисунок 5. Схема задержки импульса на таймере 555

При подаче на вход устройства положительного импульса выходной импульс появляется с задержкой, определяемой параметрами RC цепочки, время задержки определяется по формуле, показанной на рисунке. Но по формуле значение определяется весьма приблизительно.

При наличии двухлучевого осциллографа определить время очень просто: достаточно оба сигнала подать на разные входы и измерить время задержки импульса. А если двухлучевого осциллографа в наличии нет? Вот тут-то и придет на помощь режим внешней развертки.

Первое, что надо сделать это подать входной сигнал схемы (рис. 5) на вход внешней синхронизации и сюда же подключить вход Y. Затем вращением ручки «УРОВЕНЬ» добиться устойчивого изображения входного импульса, как показано на рисунке 5б. При этом должны соблюдаться два условия: тумблер «ВНЕШ/ВНУТР» установлен в положение «ВНЕШ», а исследуемый сигнал д.б. периодическим, а не однократным, как показано на рис.5.

После этого надо запомнить положение на экране входного сигнала и подать на вход Y выходной сигнал. Остается только подсчитать требуемую задержку по делениям шкалы. Естественно, что это не единственная схема, где может потребоваться определение времени задержки между двумя импульсами, таких схем великое множество.

В следующей статье будет рассказано про виды исследуемых сигналов и их параметры, а также про то, как проводить различные измерения с помощью осциллографа.

Эта заметка будет постепенно пополняться простыми, но полезными приёмами работы с осциллографом.

Вступление

Главный вопрос, на который следует ответить: "что можно измерить с помощью осциллографа?" Как ты уже знаешь, этот прибор нужен для изучения сигналов в электрических цепях. Их формы, амплитуды, частоты. По полученным данным можно сделать вывод и о других параметрах изучаемой цепи. Значит с помощью осциллографа в основном можно (я не говорю про супер функции супер-современных приборов):

  • Определить форму сигнала
  • Определить частоту и период сигнала
  • Измерить амплитуду сигнала
  • Не напрямую, но измерить ток тоже можно (закон Ома в руки)
  • Определить угол сдвига фазы сигнала
  • Сравнивать сигналы между собой (если прибор позволяет)
  • Определять АЧХ
  • Забыл что-то упомянуть? Напомните в комментариях!

Все дальнейшие примеры следует делались с рассчетом на аналоговый осциллограф. Для цифрового всё тоже самое, но больше умеет, чем аналоговый и в определённых вопросах снимает необходимость думать там, где можно просто показать цифру. Хороший инструмент таким и должен быть.

Итак, перед работой следует подготовить прибор: поставить на стол, подключить к сети =) Да ладно, шучу. Но если есть возможность, то следует его заземлить. Если есть встроенный калибратор, то по инструкции к прибору надо его откалибровать. (подсказка: инструкции есть в сети).

Подключать свой осциллограф к исследуемой цепи ты будешь с помощью щупа. Это такой коаксильный провод, на одном конце которого разъем для подключения к осциллографу, а на втором щуп и заземление для подключения к исследуемой цепи. Какой попало провод в качестве щупа использовать нельзя. Только специальные щупы. Иначе вместо реальной картины дел увидишь чушь.



Я не буду рассматривать каждый регулятор осциллографа подробно. В сети есть море таких обзоров. Давай лучше учиться как проводить любительские измерения: будем определять амплитуду, частоту и период сигнала, форму, полосу пропускания усилителя, частоту среза фильтра, уровень пульсаций источника питания и т.д. Остальные хитрости и приёмы придут с практикой. Тебе понадобится осциллограф и генератор сигнала.

Виды сигналов

Буду говорить без барских штучек, по-мужицки. На экране осциллографа ты будешь видеть либо синусоидальный сигнал, либо пилу, либо прямоугольнички, либо треугольный сигнал, либо просто какой-нибудь безымянный график.


Все виды сигналов не перечесть. Да и сами сигналы не знают, что относятся к какому-то там виду. Так что твоя задача не названия запоминать, а смотреть на экран и быстро соображать, что означает увиденное на нём, какой процесс идёт в цепи.

Амплитуда, частота, период

Осциллограф умеет измерять как постоянное, так и переменное напряжение. У всех приборов для этого есть два режима: измерение только переменного сигнала, измерение постоянного и переменного одновременно.

Это значит, что если ты выберешь измерение переменного сигнала и подключишь щуп к батарейке, то на экране прибора ничего не изменится. А если выберешь второй режим и проделаешь тоже самое, то линия на экране прибора сместится приблизительно на 1.6В вверх (величина ЭДС пальчиковой батарейки). Зачем это нужно? Для разделения постоянной и переменной составляющей сигнала!

Пример. Решил ты измерить пульсации в только что собранном источнике постоянного напряжения на 30В. Подключаешь к осциллографу, а луч убежал далеко вверх. Для того, чтобы удобно наблюдать сигнал придется выбрать максимальное значение В/дел на клетку. Но тогда ты пульсаций точно не увидишь. Они слишком малы. Что делать? Переключаешь режим входа на измерение переменного напряжения и крутишь ручку В/Дел на масштаб в разы поменьше. Постоянная составляющая сигнала не пройдет и на экране будут показываться только только пульсации источника питания.

Амплитуду переменного напряжения легко определить зная цену деления В/дел и просто посчитать число клеток по оси ординат, которые занимает этот сигнал от нулевого значения (среднего), до максимального.



Если посмотреть на экран осциллографа на картинке выше и предположить, что В/дел = 1В, тогда амплитуда синусоиды будет 1.3В.

А если предположить, что Время/дел (развертка) установлено в 1 миллисекунду, тогда период этой синусоиды будет занимать 4 клетки, а зачит период T = 4 мс. Легко? Давай теперь вычислим частоту этой синусоиды. Частота и период связаны формулой: F = 1/T (Т в секундах). Следовательно F = 1/ (4*10 -3) и равняется 250 Гц.

Конечно, это очень грубая прикидка, которая годится только для вот таких чистеньких и красивых сигналов. А если подать вместо чистой синусоиды какую-нибудь музыкальную композицию, то в ней будет множество разных частот и на глазок уже не прикинешь. Чтобы определить какие частоты входят в эту композицию потребуется анализатор спектра. А это уже другой прибор.

Измерение частоты

Как я уже писал выше, с помощью осциллографа можно измерять и частоту. А ещё можно не просто измерить частоту какого-нибудь синусоидального сигнала, а даже сравнить частоты двух сигналов, к примеру, с помощью фигур Лиссажу.

Это очень удобно, когда хочется, например, откалибровать собранный своими руками генератор сигналов, а частотомера под руками нет. Тогда и приходят на помощь фигуры Лиссажу. Жаль не все аналоговые осциллографы могут их показывать.

Сдвиг фаз

Частенько бывает так, что фаза тока и фаза напряжения расходятся. Например, после прохождения через конденсатор, индуктивность или целую цепь. И если у тебя есть двухканальный осциллограф, то легко можно посмотреть как сильно отличаются фазы тока и напряжения (А если есть современный цифровой, то там есть даже специальная функция для измерения сдвига фаз. Круто!) . Для этого следует подключить осциллограф вот таким образом: