Влияние неблагоприятных метеорологических условий на организм человека. Метеорологические условия (микроклимат), их параметры и влияние на жизнедеятельность человека Как влияют метеоусловия на состояние организма человека

В статье рассматривается микроклимат производственных помещений, влияние метеорологических условий на организм человека, мероприятия по обеспечению нормированного микроклимата производственных помещений, даны рекомендации по профилактике перегревов и переохлаждений.

Метеорологические условия, или микроклимат производственных помещений, складываются из температуры воздуха в помещении, инфракрасного и ультрафиолетового излучения от нагретого оборудования, раскаленного металла и других нагретых поверхностей, влажности воздуха и его подвижности. Все эти факторы, или метеорологические условия в целом, определяются двумя основными причинами: внутренними (тепло и влаговыделения) и внешними (метеорологические условия). Первые из них зависят от характера технологического процесса, оборудования и применяемых санитарно-технических устройств и, как правило, носят относительно постоянный характер для каждого цеха или отдельного участка производства; вторые - сезонного характера, резко изменяются в зависимости от времени года. Степень влияния внешних причин во многом зависит от характера и состояния наружных ограждений производственных зданий (стен, кровли, окон, въездных проемов и т. п.), а внутренних - от мощностей и степени изоляции источников выделения тепла, влаги и эффективности санитарно - технических устройств.


Микроклимат производственных помещений


Тепловой режим производственных помещений определяется количеством тепловыделений внутрь цеха от горячего оборудования, изделий и полуфабрикатов, а также от солнечной радиации, проникающей в цех через открытые и остекленные проемы или нагревающей кровлю и стены здания, а в холодный период года - от степени отдачи тепла за пределы помещения и от отопления. Определенную роль играют тепловыделения от различного рода электродвигателей, которые при работе нагреваются и отдают тепло в окружающее пространство. Часть поступившего в цех тепла отдается наружу через ограждения, а остальное, так называемое явное тепло нагревает воздух рабочих помещений.


Согласно гигиеническим требованиям к проектированию вновь строящихся и реконструируемых промышленных предприятий (СП 2.2.1.1312-03) производственные помещения по удельному тепловыделению делятся на две группы: холодные цехи, где явное тепловыделение в помещении не превышает 20 ккал/м 3 ч, и горячие цехи, где они выше этой величины.
Воздух цеха, постепенно соприкасаясь с горячими поверхностями источников тепловыделений, нагревается и поднимается вверх, а его место замещает более тяжелый холодный воздух, который, в свою очередь, также нагревается и поднимается вверх. В результате постоянного движения воздуха в цехе происходит его нагрев не только в месте нахождения источников тепла, но и на более отдаленных участках. Такой путь отдачи тепла в окружающее пространство называется конвекционным. Степень нагрева воздуха измеряется в градусах. Особенно высокая температура наблюдается на рабочих местах, не имеющих достаточного притока наружного воздуха или расположенных в непосредственной близости от источников тепловыделений.
Противоположная картина наблюдается в тех же цехах в холодный период года. Нагретый горячими поверхностями воздух поднимается вверх и частично уходит из цеха через проемы и неплотности в верхней части здания (фонари, окна, шахты); на его место подсасывается холодный наружный воздух, который до соприкосновения с горячими поверхностями нагревается очень мало, в силу чего нередко рабочие места омываются холодным воздухом.
Все нагретые тела со своей поверхности излучают поток лучистой энергии. Характер этого излучения зависит от степени нагрева излучающего тела. При температуре выше 500 o С спектр излучения содержит как видимые - световые лучи, так и невидимые - инфракрасные лучи; при меньших температурах этот спектр состоит только из инфракрасных лучей. Гигиеническое значение имеет в основном невидимая часть спектра, то есть инфракрасное, или, как его иногда не совсем правильно называют, тепловое излучение. Чем ниже температура излучаемой поверхности, тем меньше интенсивность излучения и больше длина волны; по мере увеличения температуры увеличивается интенсивность, но уменьшается длина волны, приближаясь к видимой части спектра.
Источники тепла, имеющие температуру 2500 - 3000 o С и более, начинают излучать также ультрафиолетовые лучи (вольтова дуга электросварки или электродуговых печей). В промышленности для специальных целей используются так называемые ртутно-кварцевые лампы, которые излучают преимущественно ультрафиолетовые лучи.
Ультрафиолетовые лучи также имеют различные длины волн, но в отличие от инфракрасных по мере увеличения длины волны они приближаются к видимой части спектра. Следовательно, видимые лучи по длине волн находятся между инфракрасными и ультрафиолетовыми.
Инфракрасные лучи, попадая на какое-либо тело, нагревают его, что и послужило поводом называть их тепловыми. Это явление объясняется способностью различных тел в той или иной степени поглощать инфракрасные лучи, если температура облучаемых тел ниже температуры излучающих; при этом лучистая энергия превращается в тепловую, вследствие чего облучаемой поверхности передается то или иное количество тепла. Этот путь передачи тепла называется радиационным. Различные материалы обладают различной степенью поглощения инфракрасных лучей, и, следовательно, при облучении они нагреваются по-разному. Воздух совершенно не поглощает инфракрасные лучи и поэтому не нагревается, или, как принято говорить, он является теплопрозрачным. Блестящие, светлые поверхности (например, алюминиевая фольга, полированные листы жести) отражают до 94 - 95 % инфракрасных лучей, а поглощают всего 5 - 6 %. Черные матовые поверхности (например, покрытие сажей) поглощают почти 95 - 96 % этих лучей, поэтому нагреваются более интенсивно.


Влияние метеорологических условий на организм


Человек может переносить колебания температур воздуха в весьма широких пределах от - 40 - 50 o и ниже до +100 o и выше. Организм человека приспосабливается к столь широкому диапазону колебаний температур окружающей среды посредством регулирования теплопродукции и теплоотдачи человеческого организма. Этот процесс называется терморегуляцией.
В результате нормальной жизнедеятельности организма в нем постоянно происходит образование тепла и его отдача, то есть теплообмен. Тепло образуется вследствие окислительных процессов, из которых две трети падает на окислительные процессы в мышцах. Отдача тепла идет тремя путями: конвекцией, радиацией и испарением пота. В нормальных метеорологических условиях окружающей среды (температура воздуха около 20 o С) конвекцией отдается около 30 %, радиацией - около 45 % и испарением пота - около 25 % тепла.
При низких температурах окружающей среды в организме усиливаются окислительные процессы, увеличивается внутренняя теплопродукция, за счет чего и сохраняется постоянная температура тела. На холоде люди стараются больше двигаться или работать, так как работа мышц ведет к усилению окислительных процессов и увеличению теплопродукции. Дрожь, появляющаяся при длительном нахождении человека на холоде, есть не что иное, как мелкие подергивания мышц, что также сопровождается усилением окислительных процессов и, следовательно, повышением теплопродукции.
В условиях горячих цехов более важное значение имеет отдача тепла организмом. Увеличение теплоотдачи всегда связано с увеличением кровенаполнения периферических кожных сосудов. Об этом свидетельствует покраснение кожных покровов при воздействии на человека повышенной температуры или инфракрасной радиации. Кровенаполнение поверхностных сосудов ведет к повышению температуры кожных покровов, что способствует более интенсивной отдаче тепла в окружающее пространство конвекционным и радиационным путем. Приток крови к кожным покровам активизирует деятельность расположенных в подкожной клетчатке потовых желез, что ведет к увеличению потовыделения и, следовательно, к более интенсивному охлаждению организма. Великий русский ученый И. П. Павлов и его ученики рядом экспериментальных работ доказали, что в основе этих явлений лежат сложные рефлекторные реакции при непосредственном участии центральной нервной системы.
В горячих цехах, где температура окружающего воздуха может достигать высоких величин, где имеется интенсивное инфракрасное излучение, терморегуляция организма осуществляется несколько иначе. Если температура окружающего воздуха равна или выше температуры кожного покрова (32 - 34 o С), человек лишен возможности отдавать избытки тепла конвекционным путем. При наличии нагретых предметов и других поверхностей в цехе, особенно при инфракрасном излучении, весьма затруднен и второй путь теплообмена - радиация. Таким образом, в этих условиях терморегуляция крайне затруднена, так как основная нагрузка падает на третий путь - теплоотдачи испарением пота. В условиях повышенной влажности, наоборот, затруднен третий путь теплоотдачи - испарением пота -и отдача тепла происходит конвекцией и радиацией. Наиболее тяжелые условия терморегуляции создаются при сочетании высокой температуры окружающей среды и повышенной влажности воздуха.
Несмотря на то, что организм человека благодаря терморегуляции может приспосабливаться к весьма широкому диапазону колебаний температур, нормальное физиологическое состояние его сохраняется лишь до определенного уровня. Верхняя граница нормальной терморегуляции в полном покое лежит в пределах 38 - 40 o С при относительной влажности воздуха около 30 %. При физической нагрузке или повышенной влажности воздуха этот предел снижается.
Терморегуляция в неблагоприятных метеорологических условиях, как правило, сопровождается напряжением определенных органов и систем, что выражается в изменении их физиологических функций. В частности, при действии высоких температур отмечается повышение температуры тела, что свидетельствует о некотором нарушении терморегуляции. Степень повышения температуры, как правило, зависит от температуры окружающего воздуха и от продолжительности его воздействия на организм. Во время физической работы в условиях высоких температур температура тела увеличивается больше, чем при аналогичных условиях в покое.
Действие высоких температур почти всегда сопровождается повышенным потоотделением. В неблагоприятных метеорологических условиях рефлекторное потоотделение часто достигает таких размеров, что пот не успевает испаряться с поверхности кожи. В этих случаях дальнейшее увеличение потоотделения ведет не к увеличению охлаждения организма, а к сокращению его, так как водяной слой препятствует снятию тепла непосредственно с кожного покрова. Такое профузное потоотделение называют неэффективным.
Величина потоотделения у рабочих горячих цехов достигает 3 - 5 л за смену, а при более неблагоприятных условиях она может достигать 8 - 9 л за смену. Обильное потение ведет к значительной потере влаги организмом.
Высокая температура окружающего воздуха оказывает большое влияние на сердечно - сосудистую систему. Повышение температуры воздуха выше определенных пределов дает учащение пульса. Установлено, что учащение пульса начинается одновременно с повышением температуры тела, то есть с нарушением терморегуляции. Эта зависимость дает возможность по учащению пульса судить о состоянии терморегуляции при условии отсутствия прочих факторов, оказывающих влияние на частоту сердечных сокращений (физическое напряжение и пр.).
Воздействие на организм высокой температуры вызывает понижение кровяного давления. Это результат перераспределения крови в организме, где происходит отток крови от внутренних органов и глубоких тканей и переполнение периферических, то есть кожных, сосудов.
Под влиянием высокой температуры изменяется химический состав крови, увеличивается удельный вес, остаточный азот, уменьшается содержание хлоридов и углекислоты и т. д. Особое значение в изменении химического состава крови имеют хлориды. При чрезмерном потении в условиях высоких температур хлориды выводятся из организма вместе с потом, вследствие чего нарушается водно-солевой обмен. Значительные нарушения водно-солевого обмена могут привести к так называемой судорожной болезни.
Высокая температура воздуха неблагоприятно действует на функции органов пищеварения и на витаминный обмен.
Таким образом, высокая температура воздуха (выше допустимого предела) оказывает неблагоприятное влияние на жизненно важные органы и системы человека (сердечно-сосудистую, центральную нервную систему, пищеварительную), вызывая нарушения нормальной их деятельности, а при наиболее неблагоприятных условиях может вызвать серьезные заболевания в виде перегревания организма, называемые в быту тепловыми ударами.


Пути обеспечения нормального микроклимата производственных помещений,
профилактика перегревов и переохлаждений


Метеорологические условия в рабочих помещениях нормируются по трем основным показателям: температуре, относительной влажности и подвижности воздуха. Эти показатели различны для теплого и холодного периодов года, для различных по тяжести видов работ, выполняемых в этих помещениях (легкие, средней тяжести и тяжелые). Кроме того, нормируются верхние и нижние допустимые пределы этих показателей, которые должны соблюдаться в любом рабочем помещении, а также оптимальные показатели, обеспечивающие наилучшие условия работы.
Мероприятия по обеспечению нормальных метеорологических условий на производстве, как и многие другие, носят комплексный характер. Существенную роль в этом комплексе играют архитектурно - планировочное решения производственного здания, рациональное построение технологического процесса и правильное использование технологического оборудования, применение ряда санитарно-технических устройств и приспособлений. Помимо этого, используются меры индивидуальной защиты и личной гигиены. Это радикально не улучшает метеорологических условий, но защищает рабочих от их неблагоприятного воздействия.
Оздоровление условий труда в горячих цехах
Планировка помещений горячих цехов должна обеспечивать свободный доступ свежего воздуха ко всем участкам цеха. Наиболее рациональны в гигиеническом отношении мало пролетные здания. В многопролетных зданиях средние пролеты, как правило, проветриваются хуже крайних, поэтому при проектировании горячих цехов всегда следует сокращать число пролетов до минимума. Для свободного поступления наружного, более холодного воздуха и, следовательно, для лучшего проветривания помещений весьма важно оставлять максимальное количество свободного от застроек периметра стен. Иногда пристройки сосредоточиваются в одном месте и создают неблагоприятные условия для доступа свежего воздуха на определенном участке. Во избежание этого пристройки следует размещать на небольших участках с разрывами, лучше с торцов здания и, как правило, не у горячего оборудования. Крупные пристройки, которые по технологическим или другим требованиям должны быть связаны непосредственно с горячим цехом, например бытовые, лаборатории, лучше строить отдельно и соединять лишь узким коридором.
Оборудование в горячем цехе нужно размещать таким образом, чтобы все рабочие места хорошо проветривались. Необходимо избегать параллельного размещения горячего оборудования и других источников тепловыделения, так как в этих случаях рабочие места и вся зона, расположенная между ними, плохо проветривается, свежий воздух, проходя над источниками тепловыделения, приходит на рабочее место в нагретом состоянии. Аналогичное положение создается, если горячее оборудование находится у глухой стены. С гигиенической точки зрения наиболее целесообразно располагать его вдоль наружных стен, снабженных оконными и другими проемами, с основной зоной обслуживания - рабочими местами - со. стороны этих стен. Не рекомендуется рядом с горячим оборудованием располагать рабочие места, на которых производятся холодные работы (вспомогательные, подготовительные, ремонтные и др.).
Для защиты крыши зданий от солнечной радиации и, следовательно, от передачи тепла внутрь зданий перекрытие верхнего этажа хорошо тепло изолируется. В солнечные летние дни хороший эффект дает мелкое разбрызгивание воды по всей поверхности крыши.
На летний период стекла окон, фрамуг, фонарей и других проемов целесообразно покрывать непрозрачной белой краской (мелом). Если оконные проемы открываются для проветривания, их следует зашторивать белой редкой тканью. Наиболее рационально в открытых оконных проемах оборудовать жалюзи, которые пропускают рассеянный свет и воздух, но преграждают путь прямым солнечным лучам. Подобные жалюзи изготовляются из полосок непрозрачной пластмассы или тонкой листовой жести, окрашенных в светлые тона. Длина полосок - во всю ширину окна, ширина - 4 - 5 см. Полоски укрепляются под углом 45 o с интервалом, равным ширине полоски, горизонтально по всей высоте окна.
Для охлаждения воздуха, поступающего в цех в теплый период года, целесообразно производить мелкое распыление воды при помощи специальных форсунок в открытых въездных и оконных проемах, в приточных венткамерах и вообще в верхней зоне цеха, если это не мешает нормальному технологическому процессу. Полезно также периодически опрыскивать пол цеха водой.
Чтобы предупредить сквозняки в зимний период, все въездные и другие часто открывающиеся проемы оборудуются тамбурами или воздушными завесами. Чтобы холодные потоки воздуха не попадали непосредственно на рабочие места, последние в холодный период года целесообразно экранировать со стороны открывающихся проемов щитами на высоту около 2 м.
Существенную роль в оздоровлении условий труда играют механизация и автоматизация технологических процессов. Эта позволяет удалить рабочее место от источников тепловыделений, а нередко и значительно сократить их воздействие. Рабочие освобождаются от тяжелой физической работы.
При механизации и автоматизации процессов появляются новые виды профессий: машинисты и операторы Труд их характеризуется значительным нервным напряжением. Для этих рабочих необходимо создать наиболее благоприятные условия труда, так как сочетание нервного напряжения с неблагоприятным микроклиматом особенно вредно.
Мероприятия по борьбе с избытками тепла направляются на максимальное сокращение их выделения, так как легче предупредить избытки тепла, чем удалить их из цеха. Наиболее эффективным способом борьбы с ними является изоляция источников тепловыделений. Санитарными нормами установлено, что температура наружных поверхностей источников тепловыделений в зоне расположения рабочих мест не должна превышать 45 o С, а прй температуре внутри них менее 100 o С - не более 35 o С. Если добиться этого путем теплоизоляции невозможно, рекомендуется экранировать эти поверхности и применять другие санитарно-технические меры.
Учитывая, что инфракрасная радиация действует не только на рабочих, а нагревает все окружающие предметы и ограждения и создает тем самым весьма значительные источники вторичного выделения тепла, целесообразно горячее оборудование и источники инфракрасного излучения экранировать не только на участках размещения рабочих мест, а по возможности по всему периметру.
Для изоляции источников тепла применяются обычные термоизоляционные материалы, обладающие низкой теплопроводностью. К ним относятся пористый кирпич, асбест, специальные глины с примесью, асбеста и т. п. Лучший гигиенический эффект дает водяное охлаждение наружных поверхностей горячего оборудования. Оно применяется в виде водяных рубашек или системы труб, покрывающих снаружи горячие поверхности. Вода, циркулирующая по системе труб, отбирает тепло с горячей поверхности и не допускает выделения его в помещение цеха. Для экранирования примеряются щиты высотой не менее 2 м, поставленные параллельно горячей поверхности на небольшом расстоянии от нее (5 - 10 см). Подобные щиты препятствуют распространению конвекционных токов нагретого воздуха от горячей поверхности в окружающее пространство. Конвекционные токи направляются вверх по щели, образованной горячей поверхностью и щитом, и нагретый воздух, минуя рабочую зону, уходит наружу через аэрационные фонари и другие проемы. Для удаления тепловыделений от небольших источников тепла или от локализованных (ограниченных) мест его выделения можно использовать местные укрытия (зонты, кожухи) с механическим или естественным отсосом.
Описанные мероприятия не только снижают тепловыделения конвекционным путем, они приводят также к снижению интенсивности инфракрасного излучения.
Для защиты рабочих от инфракрасного облучения применяется ряд специальных устройств и приспособлений. Большинство из них представляет собой экраны различной конструкции, которые защищают рабочего от прямого облучения. Они устанавливаются между рабочим местом и источником излучения. Экраны могут быть стационарными и переносными.
В тех случаях, когда рабочий не должен наблюдать за горячим оборудованием или другим источником излучения (слитком, прокатом и т. п.), экраны делаются из непрозрачного материала (асбофанеры, жести). Во избежание нагрева под действием инфракрасных лучей целесообразно их поверхность, обращенную к источнику излучения, покрывать полированной жестью, алюминием или оклеить алюминиевой фольгой. Экраны из жести, как и щиты у нагретых поверхностей, делаются двух или (лучше) трехслойными с воздушной прослойкой между каждым слоем в 2 - 3 см.
Наиболее эффективны экраны с водяным охлаждением. Они состоят из двух металлических стенок, соединенных между собой герметично по всему периметру; между стенками циркулирует холодная вода, подаваемая из водопровода специальной трубкой и стекающая с противоположного края экрана по выпускной трубе в канализацию. Такие экраны, как правило, полностью снимают инфракрасное облучение.
Если обслуживающий персонал должен наблюдать за работой оборудования, механизмов или за ходом процесса, используются прозрачные экраны. Простейшим экраном данного типа может служить обычная мелкая металлическая сетка (сечение ячейки 2 - 3 мм), которая сохраняет видимость и снижает интенсивность облучения в 2 - 2,5 раза.
Более эффективны водяные завесы: они снимают инфракрасную радиацию почти полностью. Водяная завеса представляет собой тонкую водяную пленку, которая образуется при равномерном стекании воды с гладкой горизонтальной поверхности. С боков водяная пленка ограничивается рамкой, а снизу вода собирается в приемный желоб и специальным стоком отводится в канализацию. Подобная водяная завеса абсолютно прозрачна. Однако оборудование ее требует особой точности выполнения всех элементов и их наладки. Эти условия не всегда выполняются, в силу чего может нарушаться работа завесы (пленка “рвется”).
Более проста в изготовлении и эксплуатации водяная завеса с сеткой. Вода стекает по металлической сетке, поэтому водяная пленка более прочная. Однако эта завеса несколько снижает видимость, поэтому она может применяться лишь в тех случаях, когда не требуется особо точного наблюдения. Загрязнение сетки ведет к еще большему ухудшению видимости. Особенно неблагоприятно, сказывается загрязнение сетки смазочными и другими маслами. В этих случаях сетка не смачивается водой, и пленка начинает “рваться”, рябить, ухудшается видимость и проходит часть инфракрасных лучей. Поэтому сетку этой водяной завесы следует содержать в чистоте, периодически промывать горячей водой с мылом и щеткой. В Киевском институте гигиены труда и профзаболеваний разработан аквариальный экран, предназначенный для защиты от облучения рабочих, находящихся в замкнутых пространствах: за пультом управления, в кабинах кранов и т. п. Эти экраны построены по тому же принципу, что и описанные выше непрозрачные экраны с водяным охлаждением, но боковые стенки в данном случае изготовлены не из металла, а из стекла. Для того чтобы на внутренней части стекол не оседали соли и тем самым не нарушали видимости, внутри экрана должна циркулировать дистиллированная вода. Эти экраны полностью сохраняют прозрачность, однако они требуют весьма аккуратного обращения, так как малейшее повреждение может вывести их из строя (бой стекол и вытекание воды).
Для снятия тепла и конвекционного и лучистого, воздействующего на рабочего, в горячих цехах широко применяется воздушное душирование, начиная от настольного вентилятора и кончая мощными промышленными аэраторами и приточными вентиляционными системами с подачей воздуха непосредственно на рабочее место. Для этой цели используются как простые, так и аэраторы с распылением воды, повышающей охлаждающий эффект за счет ее испарения.
Рациональное оборудование мест отдыха играет важную роль. Они располагаются вблизи основных рабочих мест, чтобы рабочие могли пользоваться ими даже при кратковременных перерывах. В то же время места отдыха должны быть удалены от горячего оборудования и других источников выделения тепла. Если удалить их невозможно, необходимо тщательно изолировать от влияния конвекционного тепла, инфракрасного излучения и других неблагоприятных факторов. Места отдыха оборудуются удобными скамейками со спинками. В теплый период года туда следует подавать свежий охлажденный воздух. Для этого оборудуется местная приточная вентиляция или устанавливаются аэраторы с водяным охлаждением. Крайне желательно на местах отдыха установить полудуши для принятия гидропроцедур и приблизить будку с подсоленной газированной водой или доставлять воду на места отдыха в специальных баллонах.
Еще институтом гигиены труда и профзаболеваний АМН СССР был разработан ряд способов радиационного охлаждения. Простейшие полузакрытые кабины радиационного охлаждения состоят из двойных металлических стен и крыши. В пространстве между двумя слоями стен циркулирует холодная артезианская вода и охлаждает их поверхность. Кабины делаются небольших размеров, внутренний размер их равен 85 x 85 см, высота - 180 - 190 см. Небольшие габариты кабины позволяют установить ее на большинстве стационарных рабочих мест.
По такому же принципу выполнена конструкция кабины отдыха- типа водяной завесы. Она изготовлена из металлической сетки, по которой стекает вода в виде сплошной водяной пленки. Эта кабина удобна тем, что рабочий, находясь в ней, может наблюдать за технологическим процессом, работой оборудования и т. п.
Более сложным устройством является специально оборудованная комната для группового отдыха. Размер ее может достигать 15 - 20 м 2 . Панели стен на высоту 2 м покрыты системой трубопроводов, по которым от компрессора подается аммиачный раствор или другой хладагент, снижающий температуру поверхности труб. Наличие большой холодной поверхности в такой комнате обеспечивает весьма ощутимую отрицательную радиацию и охлаждение воздуха.

Теги: Охрана труда, работник, микроклимат производственных помещений, влияние метеорологических условий, организм человека, мероприятия по обеспечению нормированного микроклимата, профилактика перегревов и переохлаждений

Микроклимат производственных помещений – метеорологические условия внутренней среды этих помещений, которые определяются действующими на организм человека сочетаниями температуры, влажности, скорости движения воздуха и теплового излучения.

Метеоусловия производственной среды оказывают значительное влияние на жизненные процессы в организме человека и являются важной характеристикой гигиенических условий труда. Человек чувствует себя нормально при изменении метеоусловий до определенных пределов, после чего он быстро утомляется, ослабляется его сопротивление к заболеваниям, производительность труда падает.

Для исключения перегревов и переохлаждения необходимо на рабочем месте создавать такие параметры метеорологических условий, при которых был бы обеспечен нормальных режим терморегуляции.

Давление, оказываемое воздухом, называют атмосферным давлением. Это давление будет возрастать в местностях, расположенных ниже уровня моря, и уменьшается при подъеме на высоту.

Давление воздуха принято выражать высотой ртутного столба, уравновешивающего атмосферное давление. Атмосферное давление на уровне моря равно давлению столба ртути в 760 мм высоты.

Температура – величина, характеризующая тепловое состояние тела. Если температура двух тел одинакова, то тела находятся в тепловом равновесии, т.е. тепловая энергия не переходит от одного тела к другому.

Температура воздуха является одним из решающих метеорологических факторов. С увеличением температуры увеличивается частота пульса, появляется быстрая утомляемость, наблюдаются функциональные изменения в центральной нервной системе (перегрев, тепловой удар).

Для определения температуры воздуха в производственном помещении пользуются обычными термометрами; для регистрации температуры во времени служат самопишущие приборы-термографы.

Влажность – содержание водяного пара в воздухе. Влахность воздуха характеризуют следующие величины:

  • - абсолютная влажность А – масса водяных паров, содержащихся в единице объема воздуха; - максимальная влажность М – масса водяных паров при предельном насыщении ими единицы объема воздуха при данной температуре;
  • - относительная влажность R– отношение абсолютной влажности А к максимальной М при данной температуре:R=(А/М)100%.

Из указанных выше величин при оценке метеорологических условий в производственных помещениях используется относительная влажность.

Высокая влажность в сочетании с высокой температурой затрудняет теплообмен между человеческим организмом и окружающей средой. Это приводит к быстрому утомлению, замедлению реакции человека, к перегреву человеческого организма. Чрезмерное уменьшение влажности воздуха может привести к заболеванию слизистых оболочек организма, что вредно сказывается на здоровье человека.

Движение потоков воздуха с малой скоростью в помещениях с высокой температурой оказывает благоприятное воздействие на организм человека, облегчая его терморегуляцию. Повышение же скорости воздуха (выше допустимой) оказывает неблагоприятное влияние на организм человека, вызывая озноб, простудные заболевания. Скорость движения воздуха измеряется анемометрами.

Оптимальные и допустимые величины температуры, относительной влажности и скорости движения воздуха устанавливаются для рабочей зоны производственных помещений с учетом избытков явного тепла, тяжести выполняемой работы сезонов года.

Рабочая зона – пространство высотой до 2 м над уровнем пола или площади, на которых находятся места постоянного или непостоянного (временного) пребывания работающих.

Постоянное рабочее место – место, в котором работающий находится большую часть своего рабочего времени (более 50% или более 2 ч непрерывно).

Непостоянное рабочее место – место, на котором работающий находится меньшую часть своего рабочего времени.

Оптимальные микроклиматические условия – сочетания количественных показателей микроклимата, которые при длительном и систематическом воздействии на человека обеспечивают сохранение нормального теплового состояния организма без напряжения механизмов терморегуляции. Они обеспечивают ощущение теплового комфорта и создают предпосылки для высокого уровня работоспособности.

Допустимые микроклиматические условия - сочетания количественных показателей микроклимата, которые при длительном и систематическом воздействии на человека могут вызывать переходящие и быстро нормализующиеся изменения теплового состояния организма, сопровождающиеся напряжением механизмов терморегуляции, не выходящим за пределы физиологических приспособительных возможностей. При этом не возникает повреждений или нарушений состояния здоровья, но могут наблюдаться дискомфортные теплоощущения, ухудшение самочувствия и понижение работоспособности.

Холодный период года – период года, характеризуемый среднесуточной температурой наружного воздуха, равной +10?С и ниже.

Теплый период года - период года, характеризуемый среднесуточной температурой наружного воздуха выше +10?С.

Среднесуточная температура наружного воздуха – средняя величина температуры наружного воздуха, измеренная в определенные часы суток через одинаковые интервалы времени. Она принимается по данным метеорологической службы.

В промышленности строительных материалов и при производстве строительных работ возможны различные профессиональные заболевания. У рабочих, занятых производством цемента, возможны пневмокониозы, пылевой бронхит, дерматозы, бронхиальная астма. При производстве железобетонных изделий, изделий из стекла, кирпича и керамики, материалов на основе асбоцемента отмечаются случаи вибрационной болезни, невриты, дерматоз, пневмокониоз и бронхиальная астма. У машинистов, управляющих строительной техникой, возникает виброболезнь, у отделочников - отравления и заболевания кожного покрова, у сварщиков - заболевания глаз.
   Условия труда зависят не только от окружающих человека производственных факторов, но в большей мере и от напряженности труда, от его тяжести. Все выполняемые человеком работы делятся по тяжести на три категории. Характеристика тяжести работ, энергозатраты и мероприятия, необходимые для восстановления исходного состояния организма, приведены в табл. 1.
   Большое влияние на организм человека в производственных условиях оказывают метеорологические условия, или микроклимат. Они определяются сочетанием таких параметров, как температура t(°C), относительная влажность ф (%), скорость движения воздуха на рабочем месте v (м/с) и давление Р (Па, мм рт. ст.).
   Относительная влажность воздуха (%) представляет собой отношение фактического количества паров воды в воздухе при данной температуре D (г/м3) к количеству пара, насыщающего воздух при этой же температуре, Do (г/м3), т. е.

   Оптимальная относительная влажность установлена в пределах 40...60%, а допускаемая - до 75%.
   Важным фактором для нормальных условий работы является подвижность воздуха, которая в зависимости от внешних условий может составлять 0,2... 1,0 м/с.

Таблица 4.1. Характеристика работ

Вид работы Категория Энергозатраты, дж/с (ккал/ч)

Мероприятия по восстановлению исходного состояния организма человека

Легкая
I До 170 (150)

Отдых после ра бочего дня

Средней тяжести I I а
I I б
170...225(150...200)
225...280(200...250)
Оздоровительные мероприятия
Тяжелая I I I Более 280(250) Лечебные мероприятия

   Движение воздуха улучшает теплообмен между телом человека и окружающей средой, но излишняя подвижность (сквозняки, ветер) создает опасность простудных заболеваний. Человек постоянно находится в процессе теплового взаимодействия с окружающей средой. Тепловыделение организмом человека зависит от степени его физического напряжения и окружающих метеорологических условий. Кроме физических нагрузок на теплообмен между организмом человека и внешней средой оказывает влияние избыточная теплота, поступающая в помещение в результате технологических процессов и отводимая строительными конструкциями и вентиляцией.
   Повышенная влажность затрудняет теплообмен между организмом человека и окружающей средой, так как не испаряется пот, а низкая влажность вызывает пересыхание слизистых оболочек дыхательных путей.
   Систематическое отклонение от нормального метеорологического режима приводит к хроническим простудным заболеваниям, хроническим заболеваниям суставов и др.
   Оптимальные и допустимые метеорологические условия на рабочих местах в зависимости от времени года, категории работ по тяжести и характеристики помещения по теплоизбыткам нормируются СН 245-71 и ГОСТ 12.1.005-76 ССБТ. Оптимальными считаются такие условия труда, при которых проявляется наибольшая работоспособность и хорошее самочувствие. Допустимые микроклиматические условия предполагают возможность дискомфортных ощущений, но не выходящих за пределы приспособительных возможностей организма. Допустимая температура в зависимости от тяжести производимых работ и времени года может меняться от + 13°С (для тяжелых работ в холодное время года) до + 28°С (для легких работ в теплый период года).
   Для обеспечения, нормальных метеорологических условий на рабочем месте все рассмотренные параметры должны быть взаимосвязаны. При низкой температуре окружающего воздуха его подвижность должна быть минимальной, так как большая подвижность его в этом случае создает ощущение еще большего холода, а недостаточная подвижность воздуха при высокой температуре создает ощущение жары. Оптимальное для организма человека сочетание температуры, влажности, скорости движения воздуха составляет комфортность рабочей зоны.
   Параметры микроклимата измеряют комплектом приборов: температуру - термометром или термографом, влажность - гигрографом, аспирационным психрометром, гигрометром; скорость движения воздуха - крыльчатым или чашечным анемометром и кататермометром.
   Основными мероприятиями для обеспечения нормальной метеорологической среды в рабочей зоне должны быть: механизация тяжелых ручных работ, защита от источников теплового излучения, перерывы в работе для отдыха в помещениях с нормальной температурой, использование утепленной спецодежды для работающих под открытым небом. Защиту от теплового излучения осуществляют применением теплоизоляционных материалов, устройством экранов, водяных завес, воздушного душирования рабочих мест. Температура нагретых поверхностей оборудования и ограждений на рабочих местах не должна превышать 45°С. Если теплоизоляция не позволяет достичь требуемых 45°С, на поверхности оборудования осуществляется экранирование теплоизлучающего оборудования. Экран представляет собой один или несколько тонких металлических листов, расположенных вблизи теплоизлучающих стенок.
   Тепловой поток, излучаемый стенкой на экран:

   где Єд.с - степень черноты экрана и стенки, характеризующая отношение коэффициента излучения данной поверхности к коэффициенту излучения абсолютно черного тела. Эта величина зависит от состояния поверхности тела; Со - коэффициент излучения абсолютно черного тела, Вт/(м 2 xК 4); Тс, Тэ - соответственно температуры стенки и экрана, К; Ад - площадь поверхности экрана, м 2 .
   Тепловой поток, полученный от стенки, экран отдает излучением в цех:

   Так как весь тепловой поток стенки передается экрану, то можно записать:

   после подстановки получаем тепловой поток, излучаемый экраном в цех:

   а при отсутствии экрана стенка излучала бы в цех:

   Сравнивая два последних выражения, можно сделать вывод, что при применении экрана тепловой поток, отдаваемый нагретой стенкой в цех, уменьшается в два раза. Если один экран не позволяет значительно уменьшить тепловой поток, излучаемый нагретой поверхностью, то необходимо устанавливать несколько экранов или выбирать материал экрана с меньшим значением степени черноты Є.
   При установке n экранов тепловой поток, излучаемый последним экраном в окружающее пространство:

В организме человека непрерывно протекают окислительные процессы, сопровождающиеся образованием тепла. Вместе с тем непрерывно происходит и отдача тепла в окружавшую среду. Совокупность процессов, обуславливающих теплообмен человека с окружающей средой, называется терморегуляцией.

Сущность терморегуляции заключается в следующем. В обычных условиях в организме человека поддерживается постоянное соотношение между приходом и расходом тепла, благодаря чему температура тела сохраняется на уровне 36… З7°С, необходимом для нормального функционирования организма. При понижении температуры воздуха организм человека реагирует на это сужением поверхностных кровеносных сосудов, в результате чего уменьшается приток крови к поверхности тёла и температура их снижается. Это сопровождается уменьшением разности температур между воздухом и поверхностью тела и, следовательно, уменьшением теплоотдачи. При повышении температуры воздуха терморегуляция вызывает в организме человека обратные явления.

Тепло с поверхности тела человека, отдаётся путем излучения, конвекции и испарения.

Под излучением понимается поглощение лучистого тепла организма человека окружающими его твердыми телами (пол, стены, оборудование), если их температура ниже температуры поверхности тела человека.

Конвекция - непосредственная отдача тепла поверхности тела менее нагретым притекающим к нему слоям воздуха. Интенсивность теплоотдачи при этом зависит от площади поверхности тела, разности температуры тела и окружающей среды и скорости движения воздуха.

Испарение пота с поверхности тела также обеспечивает отдачу тепла организмом окружающей среде. На испарение 1г влаги требуется около 0.6 ккал тепла.

Тепловое равновесие организма также зависит от наличия вблизи рабочих мест сильно нагретых поверхностей оборудования или материалов (печи, раскаленный металл и т.д.). Такие поверхности отдают при излучении тепло менее нагретым поверхностям и человеку. Самочувствие человека, не защищенного от воздействия тепловых лучей, будет зависеть от интенсивности облучения и его продолжительности, а также от площади облучаемой поверхности кожи. Длительное облучение даже небольшой интенсивности может привести к ухудшению самочувствия.

Наличие в помещении холодных поверхностей также отрицательно влияет на человека, увеличивая отдачу тепла излучением с поверхности его тела. В результате этого у человека появляется озноб и ощущение холода. При низкой температуре окружающей среды теплоотдача организма усиливается, теплообразование не успевает компенсировать потери. Кроме того, переохлаждение организма в течение длительного времени может привести к простудным заболеваниям и ревматизму.

На тепловое равновесие человека существенное влияние оказывает влажность окружающего воздуха и степень его подвижности. Наиболее благоприятные условия для теплообмена при прочих равных условиях создаются при влажности воздуха 40...60% и температуре около +18°С Воздушная среда характеризуется значительной сухостью при ее влажности ниже 40%, а при влажности воздуха выше 60% - повышенной влажностью. Сухой воздух вызывает повышенное испарение влаги с поверхности кожного покрова, слизистых оболочек организма, поэтому у человека возникает ощущение сухости этих участков. И наоборот, при повышенной влажности воздуха испарение влаги с поверхности кожи затруднено.

Подвижность воздуха в зависимости от его температуры может по-разному влиять на самочувствие человека. Температура движущегося воздуха должна быть не выше +З5°С. При низкой температуре движение воздуха ведет к переохлаждению организма вследствие повышения теплоотдачи путем конвекции, что подтверждается характерным примером: человек легче переносит холод при неподвижном воздухе по сравнению с ветреной погодой при той же температуре. При температуре воздуха выше +35"С единственным путем теплоотдачи с поверхности тела человека является практически испарение.

В горячих цехах, а также на отдельных рабочих местах температура воздуха может доходить до 30...40°С. В таких условиях значительная часть тепла отдается за счет испарения пота. Организм человека в таких условиях может за смену терять до 5...8л воды путем потоиспарения, что составляет 7...10% веса тела. При потении человек теряет большое количество солей, витаминов, жизненно важных для организма. Организм человека обезвоживается и обессоливается.

Постепенно он перестает справляться с отдачей тепла, что приводит к перегреву тела человека. У человека появляется ощущение слабости, вялости. Его движения замедляются, а это приводит, а свою очередь, к снижению производительности труда.

С другой стороны, нарушение водно-солевого состава организма человека сопровождается нарушением деятельности сердечно-сосудистой системы, питания тканей и органов, сгущением крови. Это может привести к «судорожной болезни», характеризующейся появлением резких судорог, преимущественно в конечностях. Температура тела при этом повышается незначительно, или не повышается вовсе. Меры первой помощи при этом направлены на восстановление водно-солевого баланса и заключаются в обильном введении жидкости, в отдельных случаях - во внутривенном или подкожном введении физиологического раствора в сочетании с глюкозой. Большое значение при этом имеет также покой и ванны.

Резкие нарушения теплового баланса вызывают заболевание, называемое тепловой гипертермией, или перегревом. Это заболевание характеризуется повышением температуры тела до +40...41°С и выше, обильным потоотделением, значительным учащением пульса и дыхания, резкой слабостью, головокружением, потемнением в глазах, шумом в ушах, иногда помрачением сознания. Меры первой помощи при этом заболевании сводятся, в основном, к предоставлению заболевшему условий, способствующих восстановлению теплового баланса: покой, прохладные души, ванны.

Трудовая деятельность человека всегда протекает в определенных метеорологических условиях, которые определяются сочетанием температуры воздуха, скорости его движения и относительной влажности, барометрическим давлением и тепловым излучением от нагретых поверхностей. Если труд протекает в помещении, то эти показатели в совокупности (за исключением барометрического давления) принято называть микроклиматом производственного помещения.

По определению, приведенному в ГОСТ, микроклимат производственных помещений - это климат внутренней среды этих помещений, который определяется действующими на организм человека сочетаниями температуры, влажности и скорости движения воздуха, а также температурой окружающих поверхностей.

Если работа выполняется на открытых площадках, то метеорологические условия определяются климатическим поясом и сезоном года. Однако и в этом случае в рабочей зоне создается определенный микроклимат.

Все жизненные процессы в организме человека сопровождаются образованием теплоты, количество которой меняется от 4....6 кДж/мин (в состоянии покоя) до 33...42 кДж/мин (при очень тяжелой работе).

Параметры микроклимата могут изменяться в очень широких пределах, в то время как необходимым условием жизнедеятельности человека является сохранение постоянства температуры тела.

При благоприятных сочетаниях параметров микроклимата человек испытывает состояние теплового комфорта, что является важным условием высокой производительности труда и предупреждения заболеваний.

При отклонении метеорологических параметров от оптимальных в организме человека для поддержания постоянства температуры тела начинают происходить различные процессы, направленные на регулирование теплопродукции и теплоотдачи. Эта способность организма человека сохранять постоянство температуры тела, несмотря на значительные изменения метеорологических условий внешней среды и собственной теплопродукции, получила название терморегуляции.

При температуре воздуха в пределах от 15 до 25°С теплопродукция организма находится на приблизительно постоянном уровне (зона безразличия). По мере понижения температуры воздуха теплопродукция повышается в первую очередь за

счет мышечной активности (проявлением которой является, например, дрожь) и усиления обмена веществ. По мере повышения температуры воздуха усиливаются процессы теплоотдачи. Отдача теплоты организмом человека во внешнюю среду происходит тремя основными способами (путями): конвекцией, излучением и испарением. Преобладание того или иного процесса теплоотдачи зависит от температуры окружающего воздуха и ряда других условий. При температуре около 20°С, когда человек не испытывает никаких неприятных ощущений, связанных с микроклиматом, теплоотдача конвекцией составляет 25...30%, излучением - 45%, испарением - 20...25%. При изменении температуры, влажности, скорости движения воздуха, характера выполняемой работы эти соотношения существенно меняются. При температуре воздуха 30°С отдача теплоты испарением становится равной суммарной отдаче теплоты излучением и конвекции. При температуре воздуха более 36°С отдача теплоты происходит уже полностью за счет испарения.

При испарении 1 г воды организм теряет около 2,5 кДж теплоты. Испарение происходит, главным образом, с поверхности кожи и в значительно меньшей степени через дыхательные пути (10...20%). При нормальных условиях с потом организм теряет в сутки около 0,6 л жидкости. При тяжелой физической работе при температуре воздуха более 30 °С количество теряемой организмом жидкости может достичь 10...12 л. При интенсивном потоотделении, если пот не успевает испариться, наблюдается выделение его в виде капель. При этом влага на коже не только не способствует отдаче теплоты, а, наоборот, препятствует этому. Такое потоотделение ведет только к потере воды и солей, но не выполняет основную функцию - усиление отдачи теплоты.

Значительное отклонение микроклимата рабочей зоны от оптимального может быть причиной ряда физиологических нарушений в организме работающих, привести к резкому снижению работоспособности даже к профессиональным заболеваниям.

Перегрев.При температуре воздуха более 30°С и значительном тепловом излучении от нагретых поверхностей наступает нарушение терморегуляции организма, что может привести к перегреву организма, особенно, если потеря пота в смену приближается к 5 л. Наблюдается нарастающая слабость, головная боль, шум в ушах, искажение цветного восприятия (окраска всего в красный или зеленый цвет), тошнота, рвота, повышается температура тела. Дыхание и пульс учащаются, артериальное давление вначале возрастает, затем падает. В тяжелых случаях наступает тепловой, а при работе на открытом воздухе - солнечный удар. Возможна судорожная болезнь, являющаяся следствием нарушения водно-солевого баланса и характеризующаяся слабостью, головной болью, резкими судорогами, преимущественно в конечностях. В настоящее время в производственных условиях такие тяжелые формы перегревов практически не встречаются. При длительном воздействии теплового излучения может развиться профессиональная катаракта.

Но даже если не возникают такие болезненные состояния, перегрев организма сильно сказывается на состоянии нервной системы и работоспособности человека. Исследованиями, например, установлено, что к концу 5-часового пребывания в зоне с температурой воздуха около 31°С и влажностью 80...90%; работоспособность снижается на 62%. Значительно снижается мышечная сила рук (на 30...50%), уменьшается выносливость к статическому усилию, примерно в 2 раза ухудшается способность к тонкой координации движений. Производительность труда снижается пропорционально ухудшению метеорологических условий.

Охлаждение. Длительное и сильное воздействие низких температур может вызвать различные неблагоприятные изменения в организме человека. Местное и общее охлаждение организма является причиной многих заболеваний: миозитов, невритов, радикулитов и др., а также простудных заболеваний. Любая степень охлаждения характеризуется снижением частоты сердечных сокращений и развитием процессов торможения в коре головного мозга, что ведет к уменьшению работоспособности. В особо тяжелых случаях воздействие низких температур может привести к обморожениям и даже смерти.

Влажность воздуха определяется содержанием в нем водяных паров. Различают абсолютную, максимальную и относительную влажность воздуха. Абсолютная влажность (А) -это масса водяных паров, содержащихся в данный момент в определенном объеме воздуха, максимальная (М) - максимально возможное содержание водяных паров в воздухе при данной температуре (состояние насыщения). Относительная влажность (В)определяется отношением абсолютной влажности Ак максимальной Ми выражается в процентах:

Физиологически оптимальной является относительная влажность в пределах 40…60%.Повышенная влажность воздуха (более 75…85%) в сочетании с низкими температурами оказывает значительное охлаждающее действие, а в сочетании с высокими - способствует перегреванию организма. Относительная влажность менее 25% также неблагоприятна для человека, так как приводит к высыханию слизистых оболочек и снижению защитной деятельности мерцательного эпителия верхних дыхательных путей.

Подвижность воздуха. Человек начинает ощущать движение воздуха при его скорости примерно 0,1 м/с. Легкое движение воздуха при обычных температурах способствует хорошему самочувствию, сдувая обволакивающий человека насыщенный водяными парами и перегретый слой воздуха. В то же время большая скорость движения воздуха, особенно в условиях низких температур, вызывает увеличение теплопотерь конвекцией и испарением и ведет к сильному охлаждению организма. Особенно неблагоприятно действует сильное движение воздуха при работах на открытом воздухе в зимних условиях.

Человек ощущает воздействие параметров микроклимата комплексно. На этом основано введение так называемых эффективной и эффективно-эквивалентной температур. Эффективная температура характеризует ощущения человека при одновременном воздействии температуры и движения воздуха. Эффективно-эквивалентная температура учитывает еще влажность воздуха. Номограмма для нахождения эффективно-эквивалентной температуры и зоны комфорта была построена опытным путем (рис. 7).

Тепловое излучение свойственно любым телам, температура которых выше абсолютного нуля.

Тепловое воздействие облучения на организм человека зависит от длины волны и интенсивности потока излучения, величины облучаемого участка тела, длительности облучения, угла падения лучей, вида одежды человека. Наибольшей проникающей способностью обладают красные лучи видимого спектра и короткие инфракрасные лучи с длиной волны 0,78... 1,4 мкм, которые плохо задерживаются кожей и глубоко проникают в биологические ткани, вызывая повышение их температуры, например длительное облучение такими лучами глаз- ведет к помутнению хрусталика (профессиональной катаракте). Инфракрасное излучение вызывает также в организме человека различные биохимические и функциональные изменения.

В производственных условиях встречается тепловое излучение в диапазоне длин волн от 100 нм до 500 мкм. В горячих цехах это в основном инфракрасная радиация с длиной волны до 10 мкм. Интенсивность облучения рабочих горячих цехов меняется в широких пределах: от нескольких десятых долей до 5,0...7,0 кВт/м 2 . При интенсивности облучения более 5,0 кВт/м 2

Рис. 7. Номограмма для определения эффективной температуры и зоны комфорта

в течение 2...5 мин человек ощущает очень сильное тепловое воздействие. Интенсивность же теплового облучения на расстоянии 1 м от источника теплоты на горновых площадках доменных печей и у мартеновских печей при открытых заслонках достигает 11,6 кВт/м 2 .

Допустимый для человека уровень интенсивности теплового облучения на рабочих местах составляет 0,35 кВт/м 2 (ГОСТ 12.4.123 - 83 «ССБТ. Средства защиты от инфракрасного излучения. Классификация. Общие технические требования»).