Белки сиртуины в каких продуктах содержится. Сиртуиновая диета: когда запиваешь шоколад вином

Эйдан Гоггинс и Глен Маттен, разработчики этого принципа питания, утверждают, что продукты, содержащие особый тип протеина (сиртуиновые активаторы), запускают процесс жиросжигания в организме. А это значит, что мы должны есть их чаще и в больших количествах!


Как сиртуиновая диета влияет на здоровье

Если верить Гоггинсу и Маттен, диета не только поможет ощутить всплеск энергии, но также поспособствует увеличению мышечной массы, избавлению от лишних килограммов, улучшению метаболизма.


Побочные эффекты

Несмотря на то, что авторы методики уверяют, будто их диета — это скорее история о здоровом образе жизни, нежели о каких-то заметных изменения в весе, особо наблюдательные критики замечают, что книга Гоггинса и Маттен сопровождается слоганом: «Похудей на 7 фунтов за 7 дней!» Один фунт (примерно полкилограмма) — это уже довольно ощутимая потеря в весе, которая может не очень хорошо сказаться на здоровье. Кроме того, в вине содержатся токсины, а это значит, что как сиртуиновый активатор оно, может, прекрасно себя зарекомендовало, но в качестве ежедневного элемента диеты все же не подходит.

Как ясно из слогана, авторы предлагают похудеть за довольно короткий срок — одну неделю. Более того, в книге обозначено строгое количество калорий, которые мы должны получать ежедневно. В первые три дня — 1000 калорий, затем — 1500, а оставшееся время заполнить зелеными соками и продуктами, богатыми сиртуином.


10 продуктов, содержащих сиртуин:

Красное вино, темный шоколад, зеленый чай, каперсы, цитрусовые фрукты, яблоки, черника, петрушка, куркума, кейл.


Звезды, которые соблюдают сиртуиновую диету

Секрет генов долголетия Дэвид Синклер и Ленни Гайренте


Гены, помогающие организму пережить трудные времена, положительно влияют на состояние здоровья и продолжительность жизни. Разобравшись в том, как они работают, мы сможем подойти к решению проблемы сохранения активности в старости

Первое представление о техническом состоянии автомобиля можно составить, узнав год его выпуска и пробег. Нещадная эксплуатация и время накладывают неизгладимый отпечаток на любой механизм. То же самое можно сказать и о пожилых людях, но с одной существенной оговоркой: «изношенность» человеческого организма частично компенсируется его способностью к «саморемонту» с использованием внутренних резервов.


Одно время ученые рассматривали процесс старения не просто как истощение жизненных сил организма, а как один из этапов его генетически запрограммированного развития: лишь только мы достигаем зрелости, включаются «гены старения», выводящие нас на финишную прямую. Позже такая концепция была отвергнута, и теперь считается, что старение - это все-таки простое изнашивание организма, истощение его внутренних ресурсов, ранее поддерживавших все части «на ходу». Естественному отбору нет резона ставить подпорки тому, чей репродуктивный возраст остался позади.

Однако недавно мы обнаружили, что семейство генов, отвечающих за способность организма противостоять стрессу (слишком высоким температурам, недостатку пищи или воды и т.д.), обеспечивает также действие защитных механизмов и систем регенерации, невзирая на возраст. Оптимизируя функционирование организма в целях выживания, эти гены повышают его шансы на преодоление кризиса. И если они остаются активными достаточно продолжительное время, то вносят весомый вклад в поддержание организма в рабочем состоянии и увеличение продолжительности жизни. По существу, это «гены долголетия» - антиподы «генов старения».

Мы впервые занялись обозначенной проблемой 15 лет назад, предположив, что естественный отбор вполне мог использовать некий универсальный механизм для координации ответа организма на стресс. Если бы нам удалось идентифи цировать такой ген или гены, являющиеся главными контролерами, а, следовательно, основными регуляторами продолжительности жизни, можно было бы превратить их в мощное оружие против болезней и ухудшения состояния здоровья.

Многие из недавно открытых генов с таинственными названиями наподобие daf-2, pit-1, amp-1, clk-1 и p66Shc влияют не только на способность лабораторных животных справляться со стрессом, но и на продолжительность их жизни. Наблюдения наводят на мысль, что, возможно, они служат частью некой фундаментальной системы, позволяющей организму противостоять любым «ударам судьбы» (см. табл.). Мы сфокусировали свое внимание на гене SIR2, разные варианты которого обнаружены во всех исследованных на сегодня организмах, от дрожжей до человека. Наличие большого количества копий такого гена сопровождается увеличением продолжительности жизни у столь разных живых существ, как дрожжи и дрозофила, и мы намереваемся выяснить, воздействуют ли они на более высокоорганизованных животных, например мышей.

ГЕНЫ, ВЛИЯЮЩИЕ НА ПРОДОЛЖИТЕЛЬНОСТЬ ЖИЗНИ
Ученые идентифи цировали целый спектр генов, влияющих на продолжительность жизни различных организмов. Многие из них, как и SIR2 и его «родственники» (гены семейства Sirtiun), обеспечивают продление жизни благодаря увеличению числа своих копий или гиперактивации кодируемых ими продуктов. Но существуют гены, оказывающие прямо противоположное действие, и чтобы увеличить продолжительность жизни организма, их нужно инактивировать. Так, у круглого червя имеется ген daf-2, кодирующий рецептор для инсулина и инсулиноподобного фактора роста 1 (IGF-1). Инактивация этого гена у взрослой особи приводит к увеличению продолжительности жизни на 100%. То же происходит и при подавлении активности других генов, связанных с ростом и развитием организмов или влияющих на активность соответствующих молекул. Некоторые из перечисленных в таблице генов или их белковых продуктов регулируют активность генов семейства Sirtiun в условиях дефицита калорий либо, напротив, регулируются этими генами.
Ген или продукт гена (аналог у человека) Организм/изменение продолжительности жизни Процесс-мишень Возможные побочные эффекты
SIR2 (SIRT 1) Дрожжи, черви, дрозофила/ +30% Выживаемость клеток, метаболизм, реакция на стресс Неизвестны
TOR (TOR) Дрожжи, черви, дрозофила/ от -30 до -250% Рост клеток, реакция на изменение характера питания Повышенная чувствительность к инфекциям, рак
Daf/FoxO-белки (Рецептор инсулина и IGF-1) Черви, дрозофила, мыши/ -100% Рост и развитие, метаболизм глюкозы Карликовость, стерильность, нарушение когнитивных функций, дегенерация тканей
Clock-гены (CоO-гены) Черви/ -30% Синтез кофермента Q Неизвестны
Amp-1 (AMPK) Черви/ +10% Метаболизм, реакция на стресс Неизвестны
Гормон роста (Гормон роста) Мыши, крысы/ от -7 до -150% Регуляция размеров тела Карликовость
P66Shc (P66Shc) Мыши/ -27% Образование свободных радикалов Неизвестны
Каталаза (CAT) Мыши/ +15% Обезвреживание перекиси водорода Неизвестны
Prop 1, pit1 (Pou1F1) Мыши/ -42% Реактивность гипофиза Карликовость, стерильность, гипотериоз
Klotho (Klotho) Мыши/ от -18 до +31% Регуляция выработки инсулина, IGF-1 и витамина D Резистентность к инсулину
Methuselah (CD97) Дрозофила/ -35% Устойчивость к стрессу, взаимодействие между нейрон ами Неизвестны

Молчание - золото

SIR2 был открыт в ходе поисков ответа на вопрос, почему некоторые дрожжевые клетки живут дольше других, и может ли какой-то один ген контролировать процесс старения у простейшего организма. Мысль о том, что, разобравшись с дрожжами-долгожителями, мы приблизимся к пониманию механизма старения человека, многим в то время представлялась абсурдной.

Возраст дрожжевой клетки измеряется числом ее делений, которое обычно не превышает 20. Затем клетка погибает. Один из нас (Ленни Гайренте) занялся скринингом дрожжевых колоний в поисках клеток, которые делятся большее число раз, для того чтобы идентифи цировать гены, наделяющие организм таким замечательным свойством. В результате поисков была выявлена мутация в гене SIR4, который кодирует один из компонентов сложного белкового комплекса, содержащего фермент Sir2. Мутация в гене SIR4 приводит к тому, что молекулы Sir2 концентрируются вблизи той области дрожжевого геном а, где содержится необычайно много повторяющихся нуклеотидных последовательностей. Эта область, отвечающая за синтез компонентов рибосом - «клеточных фабрик» по сборке белков, носит название рибосомной ДНК (рДНК). В дрожжевом геном е содержится более 100 рДНК-повторов, которые клетке трудно поддерживать в неизменном состоянии. Дело в том, что повторяющиеся последовательности часто рекомбинируют друг с другом, и этот процесс имеет губительные последствия для организма. Так, у человека он причастен к возникновению рака и болезни Гентингтона. Результаты наших исследований дрожжевых клеток наводят на мысль, что старение материнских клеток сопряжено с нестабильностью рДНК.

Подобная нестабильность носит совершенно особый характер. Претерпев несколько делений, материнская дрожжевая клетка вычленяет из своего геном а избыточные рДНК-копии в виде кольцевых элементов. Внехромосомные рДНК-кольца (ERC, от англ. extrachromo-somal rDNA circles) реплицируются одновременно с хромосомой, но при клеточном делении остаются в ядре исходной клетки. Со временем их становится все больше, ресурсов клетки не хватает на репликацию геном ной ДНК, и она погибает.

Однако если в клетку ввести дополнительные копии гена SIR2, то образование ERC подавляется, а продолжительность жизни дрожжевой клетки увеличивается на 30%. Еще более эффективным стало введение SIR2-копий в клетки другого организма - круглого червя, который прожил вполовину больше положенного срока. Поразило нас не столько сходство реакции разных организмов, сколько тот факт, что данный феномен наблюдался у взрослого червя, чьи клетки уже не делятся, и у которого репликативный механизм старения, свойственный дрожжам, не действует. Как же в таком случае работает ген SIR2?

Мы обнаружили, что данный ген кодирует фермент, обладающий совершенно необычными свойствами. Известно, что молекула ДНК в клетке находится в компактной форме: она намотана на множество гистоновых «шпулек». К гистонам присоединены химические метки, т.е. ацетильные группы, с помощью которых поддерживается нужная плотность упаковки. Если часть меток удалить, то ДНК наматывается на гистоновую сердцевину слишком туго, и ферменты, обеспечивающие вычленение из нее кольцевых рДНК, оказываются беспомощными. Участки ДНК в таком сверхплотном состоянии называются молчащими, потому что ни один из их генов не может быть активирован.

О том, что белки Sir участвуют в поддержании генов в молчащем состоянии, было известно и раньше. Само сокращение «SIR» происходит от англ. silent information regulator (что можно перевести как «регулятор замалчивания информации»). Sir2 - один из ферментов, отщепляющий от гистонов ацетильные группы, но, как мы показали, он может работать только в присутствии никотинамидадениндинуклеотида (NAD), небольшой молекулы, участвующей во многих метаболических процессах в клетке. Сопряженность Sir2 c NAD весьма примечательна, поскольку тем самым протягивается ниточка от Sir2 к метаболизму, следовательно, к взаимосвязи характера питания и старения, наблюдаемой в условиях недостатка калорий.

Чем меньше калорий, тем лучше

Уменьшение количества калорий, потребляемых организмом, - самый известный способ продлить жизнь. Эта взаимосвязь была открыта более 70 лет назад и до сих пор не вызывает сомнений. Режим ограничения обычно заключается в уменьшении количества потребляемой пищи на 30–40% по сравнению с тем, что считается нормой для данного вида. Все животные (от крыс и мышей до собак и приматов) на такой диете не только живут дольше, но и отличаются отменным здоровьем. Уменьшается частота многих заболеваний, включая рак, диабет и нейродегенеративные расстройства. Однако репродуктивные способности при этом ослабевают.

Долгое время считалось, что при малом количестве калорий метаболизм замедляется, и, следовательно, уменьшается количество образующихся при этом токсинов, побочных продуктов пищеварительного процесса. Сегодня такая точка зрения признана ошибочной. Низкокалорийная диета вовсе не замедляет метаболизм ни у млекопитающих, ни у низших организмов, напротив, происходит ускорение и изменение процесса обмена веществ. Мы полагаем, что дефицит калорий служит таким же биологическим фактором стресса, что и недостаток пищи, который включает защитные системы организма, мобилизуя их на борьбу за выживание. У млекопитающих при этом меняется эффективность работы клеточных систем репарации и производства энерги и, отсрочивается апоптоз (запрограммированная гибель клеток). Намереваясь узнать, какова роль Sir2 в указанных изменениях, мы вначале попытались выяснить, как участвует этот белок в реакции на недостаток калорий у простейших организмов.

Обнаружилось, что у дрожжей дефицит питательных веществ запускает два механизма, повышающих ферментативную активность Sir2. Во-первых, включается ген под названием PNC1, который кодирует фермент, расщепляющий никотинамид - низкомолекулярное вещество, в норме подавляющее активность Sir2. Во-вторых, активируется механизм получения энерги и, при котором в качестве побочного продукта образуется NAD и одновременно уменьшается уровень его антагониста NADH. Последнее очень важно, поскольку, как выяснилось, происходит не только активация Sir2 под действием NAD, но и его инактивация под действием NADH. Следовательно, при изменении соотношения NAD/NADH в клетке существенно трансформируется и активность Sir2.

С учетом всего, что мы знаем о связи между действием стресс-факторов на организм и активностью Sir2, можно задать естественный вопрос: служит ли наличие данного белка необходимым условием увеличения продолжительности жизни? Чтобы разобраться в этом, из организма дрозофилы был удален кодирующий его ген. Изучение последствий позволило ответить на вопрос положительно. А поскольку многие ткани насекомого имеют свои аналоги у млекопитающих, можно предположить, что и для них ответ будет таким же.

Однако речь не идет о том, что для реализации всего потенциал а Sir2 нужно садиться на жесточайшую диету. Активность рассматриваемого белка и его «родственников» (их общее название - Sirtuin) можно изменять с помощью модуляторов. Особенно интересен один из Sirtuin-активаторов - низкомолекулярное вещество под названием резвератрол, который содержится, например, в красных винах. В экстремальных условиях он вырабатывается многими растениями. Sirtuin-модуляторной активностью обладают также 18 других веществ, синтезируемых растениями в ответ на стресс. Не исключено, что все они используются для регуляции активности белка Sir2.

Добавление резвератрола к низкокалорийной пище, его присутствие в культур ной среде, где растут дрожжи, введение его в организм червей и дрозофил увеличивает продолжительность их жизни на 30%, правда, только в том случае, если у них присутствует ген Sir2. Более того, дрозофилы с гиперпродукцией Sir2 живут так долго, что ни резвератрол, ни дефицит калорий никакого дополнительного эффекта не дают. Проще всего объяснить это тем, что последние влияют на продолжительность жизни через активацию белка Sir2.

Дрозофилы, получающие резвератрол, не только живут дольше, питаясь при этом вдоволь, но и сохраняют фертильность, которая часто утрачивается в условиях дефицита калорий. Если мы намереваемся в будущем использовать вещества, влияющие на активность Sir2, в медицине, то сначала необходимо детально разобраться в том, какую роль играет этот белок в организме млекопитающих.

ФЕРМЕНТ SIR2 И СТРЕСС
Умеренный стресс увеличивает продолжительность жизни дрожжевых клеток на 30%, повышая активность фермента Sir2. Стресс-факторы действуют двумя путями, но оба они приводят к одинаковому результату - подавлению ингибитора белка Sir2. Гиперактивированный Sir2, в свою очередь, устраняет одну из форм нестабильности геном а, которая приводит к тому, что число делений дрожжевого геном а не превышает 20.

Кольцевые рДНК, вырезанные из геном -ной ДНК, остаются в материнской клетке и реплицируются одновременно с ее хромосомой. После 15–20 делений их скапливается слишком много, материнская клетка не может поддерживать собственную репликацию и погибает.

Заставляя уязвимую область геном а скручиваться плотнее, Sir2 защищает ее от вырезания рДНК. Избыточные внехромосомные элементы не накапливаются в материнской ДНК, и она живет дольше.

Главный дирижер

Аналог дрожжевого SIR2-гена у млекопитающих - ген SIRT1. Он кодирует белок Sirt1, обладающий такой же ферментативной активностью, что и Sir2, кроме того, он катализирует деацетилирование широкого круга белков в ядре клетки и в цитоплазме. Некоторые из этих белков вовлечены в такие важные клеточные процессы, как апоптоз и метаболизм. Таким образом, роль генов семейства SIR как потенциал ьных генов долголетия распространяется и на млекопитающих. Правда, у столь сложных организмов механизм их действия гораздо сложнее.

Исследователи обнаружили, что при повышении содержания белка Sirt1 в организме мышей и крыс некоторые клетки выживают в таких условиях, при которых обычно запускается программа апоптоза. Sirt1 действует при этом опосредованно через регуляцию активности белков p53, FoxO и Ku70, которые участвуют или в установлении некоего критического уровня для перехода к апоптозу, или же в активации систем клеточной репарации.

Утрата клеток в результате апоптоза может быть одним из важных факторов старения, особенно когда речь идет о таких нерегенерируемых тканях, как сердечная мышца или мозг. Возможно, белки семейства Sirtuin воздействуют на процесс старения организма, отсрочивая апоптоз. Показательным примером способности белка Sirt1 повышать жизнестойкость клеток млекопитающих служит поведение мутантных мышей линии Wallerian. Особенность заключается в том, что в их организме происходит дупликация только одного гена, что значительно повышает способность их нейрон ов противостоять стрессу. Благодаря такой мутации, животные меньше подвержены токсическому действию химиотерапевтических препаратов, у них реже возникают инфаркт и нейродегенеративные расстройства в стрессовой обстановке.

В 2004 г. Джеффри Милбрандт (Jeffrey D. Milbrandt) из Университета Вашингтона в г. Сент-Луисе доказал, что упомянутая мутация приводит к повышению активности фермента, катализирующего образование NAD, а это, в свою очередь, активирует белок Sirt1. Кроме того, он обнаружил, что резвератрол и аналогичные препараты оказывают такое же защитное действие на нейрон ы обычных мышей, как и дупликация гена у грызунов линии Wallerian. Недавно Кристиан Нери (Christian Neri) из Национального института здоровья и медицинских исследований во Франции обнаружил, что резвератрол и еще один модулятор, фисетин, предотвращают гибель нервных клеток у двух организмов - червей и мышей, которые использовались в качестве модельных систем для изучения болезни Гентингтона. В обоих случаях эффект наблюдался только при наличии активного Sirtuinгена.

Механизм действия белков семейства Sirtuin на уровне индивидуальных клеток более или менее понятен. Но если кодирующие их гены имеют отношение к положительному эффекту, который дает дефицит калорий, то возникает вопрос: как именно влияет диета на их активность и, следовательно, на процесс старения? По данным Пере Пиксервера (Pere Puigserver) из Медицинской школы при Университете Джонса Хопкинса, в условиях дефицита калорий в клетках печени повышается уровень NAD, что приводит к увеличению активности белка Sirt1. Среди белков, на которые действует Sirt1, - один из важных факторов регуляции транскрипции PGC-1, оказывающий влияние на метаболизм глюкозы в клетке. Таким образом, Sirt1 одновременно определяет наличие питательных веществ и регулирует соответствующую реакцию печени.

Подобные наблюдения позволяют предположить, что белок Sirt1 - один из ключевых регуляторов метаболических процессов в печени, мышцах и клетках жировой ткани, поскольку он отслеживает любые изменения в характере питания, реагируя на соотношение между NAD и NADH, и затем коренным образом изменяет профиль транскрипции генов в этих тканях. В рамках такой схемы становится понятно, каким образом Sirt1 координирует работу генов и метаболических путей, влияющих на продолжительность жизни организма.

Однако действие Sirt1 на уровне целого организма не обязательно должно опосредоваться каким-то одним механизмом. Например, можно предположить, что «внутренний датчик» млекопитающих оценивает доступность питательных веществ по количеству энерги и, запасенной в виде жиров. Жировые клетки секретируют гормоны, которые посылают сигналы другим клеткам, причем характер сигналов зависит от количества запасенных жиров. Возможно, при уменьшении жировых запасов в условиях дефицита калорий подается сигнал «Голод!», и организм включает защитные системы. С подобной гипотез ой согласуется тот факт, что генетически модифицированные мыши, остающиеся худыми независимо от количества потребляемой пищи, как правило, живут дольше обычных особей.

Мы предположили, что Sirt1 регулирует количество запасенных жиров в ответ на изменение характера питания. Возможно, белок чувствует подобные изменения, диктует организму, какое количество жиров он должен иметь в запасе, и тем самым предопределяет уровень гормонов, секретируемых жировыми клетками, что задает темп старения организма. В таком случае становится очевидной связь между старением и таким патологическим заболеванием, обусловленным изменениями метаболизма, как диабет второго типа.

Белок Sirt1 также влияет на воспаление, сопровождающее такие серьезные заболевания, как артриты и артрозы, астма, сердечно-сосудистые патологии, нейродегенеративные расстройства. По данным Мартина Мэйо (Martin W. Mayo) из Вирджинского университета, Sirt1 подавляет активность белкового комплекса NF-кB, который участвует в запуске воспалительной реакции. Аналогичным действием обладает и Sirt1-модулятор резвератрол. Исследования важны по двум причинам: во-первых, уже давно ведутся поиски веществ, подавляющих активность NF-кB, а во-вторых, хорошо известно, что дефицит калорий подавляет воспалительные процессы.

Если ген SIR2 действительно влияет на систему регуляции процессов старения, активируемую при стрессе, то его можно сравнить с главным дирижером оркестра, в котором «играют» такие маститые «музыканты», как гормональная система, внутриклеточные белки-регуляторы и различные гены, связанные с механизмом увядания организма. Недавно было сделано еще одно замечательное открытие: оказалось, что Sirt1 участвует в регуляции выработки инсулина и инсулиноподобного фактора роста 1 (IGF-1), а эти молекулы, в свою очередь, регулируют производство Sirt1. Подобная «обратная связь» объясняет, как деятельность Sirt1 в одной ткани сказывается на клетках других тканей организма.


Фермент Sirt1 ответствен за состояние здоровья и увеличение продолжительности жизни в условиях дефицита калорий у млекопитающих. Недостаток пищи и другие биологические стресс-факторы повышают активность Sirt1, а тот, в свою очередь, влияет на внутриклеточные процессы. Стимулируя выработку различных сигнальных молекул, например, инсулина, Sirt1 может регулировать ответ на стресс организма в целом. Действие этого фермента осуществляется через его влияние на другие белки.

От обороны к активным действиям

История борьбы человека со старением насчитывает не одну тысячу лет, и очень трудно поверить, что решить проблему может какая-то горстка генов. А между тем старение у млекопитающих можно замедлить, просто ограничив поступление калорий, и к данному процессу причастны гены семейства Sirtuin. Конечно, причин старения может быть очень много, а о его механизмах известно далеко не все, но на примере самых разных организмов мы однозначно показали, что старение можно замедлить, манипулируя ограниченным числом регуляторов.

В наших лабораториях проводятся эксперименты, которые позволят ответить на вопрос, контролируют ли гены этого семейства продолжительность жизни также и у млекопитающих. Вряд ли мы скоро узнаем, могут ли указанные гены продлить жизнь на десятилетия, так что те, кто хотел бы дожить до своего 130 летия, родились рановато. Но уже при жизни нынешних поколений будут найдены лекарственные вещества (модуляторы активности ферментов, кодируемых Sirtuin-генами), с помощью которых можно будет бороться с такими недугами, как болезнь Альцгеймера, диабет, нейродегенеративные расстройства и т.д. Некоторые модуляторы уже проходят клинические испытания.

Если говорить о долгосрочной перспективе, то мы надеемся, что проникновение в тайны функционирования генов долголетия поможет справиться со старческими болезнями. Нам пока трудно представить себе жизнь сообщества, в котором 90-летние люди вполне здоровы и жизнеспособны. Многим кажутся несерьезными разговоры об увеличении продолжительности жизни с помощью неких манипуляций с генами. Вспомним, однако, что в начале ХХ в. средняя продолжительность жизни составляла всего 45 лет, а сегодня в развитых странах она достигает 75 лет. Возможно, будущим поколениям, для которых 100 лет жизни будут далеко не пределом, наши попытки сохранить трудоспособность в старости тоже покажутся жалкими стараниями малосведущих людей, но и эти усилия приносят свои плоды.

БЕЛКИ СЕМЕЙСТВА SIRTUIN В КЛЕТКЕ
Фермент Sirt1 - наиболее изученный белок семейства Sirtuin, но кроме него в клетках млекопитающих присутствуют и другие белки данного типа. Они локализуются в разных отделах клетки. Так, белок Sirt1, находящийся в ядре и цитоплазме, деацетилирует другие белки, изменяя их поведение. Многие из его мишеней - факторы транскрипции, активирующие гены, или белки, регулирующие работу этих факторов. Такая схема позволяет Sirt1 осуществлять контроль широкого спектра важных внутриклеточных процессов. Исследование роли других белков семейства Sirtuin и их способности влиять на продолжительность жизни организмов только начинается. Так, установлено, что Sirt2 модифицирует белок тубулин, из которого состоят микротрубочки, и может влиять на процесс деления клетки. Sirt3 влияет на выработку энерги и в митохондриях и, по-видимому, принимает участие в регуляции температуры тела. Функции Sirt4 и Sirt5 пока неизвестны. Мутации в гене белка Sirt6 приводят к преждевременному старению.

НЕКОТОРЫЕ МИШЕНИ БЕЛКА SIRT1

Fox01, Fox03 и Fox04: факторы транскрипции генов, влияющих на работу защитных систем клетки и метаболизм глюкозы. Гистоны Н3, Н4 и Н1: участвуют в упаковке ДНК в хромосомах. Ku70: фактор транскрипции, способствующий репарации ДНК и делению клетки. МуоD: фактор транскрипции, способствующий формированию мышц и ликвидации повреждений тканей. NCoR: регулирует работу многих генов, в том числе, влияющих на метаболизм жиров, воспалительные процессы и функционирование других регуляторных белков, таких как PGC-1. NF-кB: фактор транскрипции, участвующий в регуляции воспалительной реакции, выживаемости клеток и их роста. P300: регуляторный белок, участвующий в ацетилировании гистонов. P53: фактор транскрипции, запускающий апоптоз поврежденных клеток. PGC-1: регулирует процесс дыхания клеток и, по-видимому, играет ключевую роль в развитии мышц.


Июнь 2006

Прошлая неделя принесла еще одну весть из лабораторий об открытии механизмов омоложения, оздоровления и борьбы со старостью. В уходящем году таких новостей было немало, и даже не стоит гадать, что их в новом году будет еще больше, и это радует.

Итак, группа учёных (Gomes et al. , 2013) смогла определить один из процессов старения организма и повлиять на него, вернув молодость лабораторной крысе. Исследование — совместный проект Гарварда, Национального института изучения старения США (National Institute on Aging) и Университета Нового Южного Уэльса в Сиднее, Австралия.

Один из авторов исследования – профессор генетики медицинской школы Гарвардского университета Дэвид Синклер (на фото). Он известен как исследователь сиртуина . Сиртуины — группа генов, и один из них SIRT1 активируется при потреблении некоторых видов орехов, красного вина и винограда. Его компания Sirtris Pharmaceuticals , объявившая в свое время о прорыве в борьбе со старостью на основе молекулы резвератрола , была куплена гигантом фарминдустрии GlaxoSmithKline , и я писал об этой истории ранее в заметке .

Группа обнаружила сложную последовательность событий, происходящих при общении генома ядра клетки и генома митохондрии. Одним из ключевых участников такой коммуникации считались сиртуины, но в этот раз внимание было обращено на молекулу NAD (никотинамид-аденин-динуклотид ). Роль SIRT1 оказывается в этом процессе по-прежнему важной, но вспомогательной: они следят за тем, чтобы молекула под названием HIF-1 не вмешивалась в этот процесс общения. С годами, уровень NAD снижается, и это ухудшает способности SIRT1 удерживать HIF-1. Производство HIF-1 растет и молекула нарушает коммуникацию между геномами. Митохондрия начинает производить меньше энергии, и старение начинает проявлять себя во всем безобразии (это, конечно, упрощенная картина происходящего). Интересно, что уровень HIF-1 также растет при раковых заболеваниях, и стареющий организм человека напоминает организм человека, больного раком, хотя бы в некоторых аспектах. Ранее было показано , что контроль над этим механизмом приведет к излечению диабета второго типа. Поэтому открытие механизма и способов влияния на него – многообещающий путь. Ученые надеются, что в 2014 году можно будет приступить к клиническим испытаниям на людях, и это будет здорово.

NAD производится из материала, производимого самим организмом. Группа решила, что если для производства этой молекулы не хватает прекурсоров, их надо добавить. Вводя инъекциями один из компонентов, который производится организмом, они увидели увеличение производства НАД и омоложение. Ученые говорят, что некоторые показатели двухлетних крыс после терапии стали выглядеть так, как словно 60-тилетний человек стал 20-тилетним (опять же, только в некоторых аспектах).

Компонент называется nicotinamide mononucleotide (NMN). Крысе кололи вещество, которого в пересчете на человека потребуется 500 миллиграмм на килограмм веса, то есть 86 килограммовому мужчине потребуется 43 грамма вещества в день. NMN — несколько видов, и если речь идет о β-nicotinamide mononucleotide , то ознакомьтесь с ценником — 2,630 долларов за грамм, или чуть более 113 тысяч долларов в день. В эксперименте мышь получила недельный курс, после которого уже стали видны драматические положительные изменения. Другие источники утверждают , что грамм стоит «всего» 1000 долларов, ну, может ученые используют другой NMN, или у них хорошая скидка:). В любом случае, от 300 до 800 тысяч долларов за недельный курс омоложения.

Стоит иметь в виду, что неизвестны долгосрочные последствия такой терапии, и тот факт, что эти весьма позитивные изменения были зарегистрированы в нескольких параметрах, только в мускулатуре животного. Кроме того, крыса – не человек, а нам даже неизвестно, сколь долго бы они прожили и насколько счастливо. Так что, может, пока не стоит бежать закупаться килограммами NMN?

Интересно вот что: NMN вырабатывается натуральным образом при диете с ограничением калорий и интенсивных упражнениях. Также было показано, что резвератрол может увеличивать производство NAD. Иными словами, можно попытаться воздействовать на этот механизм более доступным и «естественным» способом. У меня есть идеи, как именно, и об этом я расскажу позже, еще в этом году.

Gomes, A. P., Price, N. L., Ling, A. J. Y., Moslehi, J. J., Montgomery, M. K., Rajman, L., . . . Sinclair, D. A. (2013). Declining NAD+ Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication during Aging. Cell , 155(7), 1624-1638.

На прошлой неделе весь мир облетело известие , что ученым удалось остановить болезнь Альцгеймера у мышей, и лекарство, которое ждут миллионы людей во всем мире, через несколько лет будет готово для лечения людей. Например, статья Би-Би-Си : «Ученые совершили прорыв в борьбе с болезнью Альцгеймера ». Исследование () названо прорывом, но поскольку в популярном изложении было мало деталей, хотелось их узнать, особенно, что за средство использовали ученые.

Мыши, которые участвовали в эксперименте, были инфицированы прионной болезнью . Это не болезнь Альцгеймера в прямом виде, но прионная болезнь – лучшая модель нейродегенеративных болезней. Такие заболевания (болезнь Паркинсона, болезнь Альцгеймера, болезнь Лу Герига и другие) вызываются широким спектром генетических и средовых факторов. Несмотря на разнообразие причин, их роднит развитие и аккумуляция неправильно сложенных белков PrP . В идеале все белки упаковываются в разнообразные, но строго заданные трёхмерные структуры.

Ошибки сворачивания белков делают его неактивным, и кроме того приводит к клеточному стрессу: такие белки накапливаются, образуя плашки, которые являются токсичными для окружающих здоровых клеток. Кроме этого, неправильно сложенные протеины начинают аберрантные взаимодействия c другими протеинами, приводящие иногда к прекращению выработки необходимых протеинов. Одним из активных участников процесса прекращения синтеза белков является белок PERK. Его повышенная активация – один из маркеров при прионных заболеваниях.

Все эти процессы чрезвычайно сложны, и идей о возможных способах влияния — бесчисленное количество. Одна из идей заключается в подавлении этого самого протеина PERK. Лекарство, которое использовали ученые, как раз и является ингибитором PERK и называется . Отчет об открытии этого полностью синтетического вещества был опубликован учёными из компании GlaxoSmithKline (GSK). Вещество может пересекать барьер кровеносной системы-мозга и, значит, администрироваться орально, в виде таблетки.

Идея сработала: все мыши, которым давали лекарство были излечены от прионной болезни! Это действительно прорыв в понимании хода болезни и ее лечения. Обнаружились, однако, серьезные побочные эффекты: повреждения поджелудочной железы, начало возникновения диабета второго типа и потери веса. Обмен нейродегенеративного заболевания на метаболическое – не самый приятный выбор, и впереди еще много работы.

Фактически предложен оригинальный, новый путь лечения болезней мозга. Сегодня нельзя сказать, что он лучший или самый перспективный, он просто один из путей. В этой связи любопытно другое: существует класс белков, называемых шапероны (помощники), «функция которых состоит в восстановлении правильной структуры белков, а также образование и диссоциация белковых комплексов» (цитата отсюда).

Уровень шаперонов повышают полифенолы , натуральные молекулы, находящиеся во многих растениях, овощах и фруктах, повышают уровень шаперонов. Флавоноиды – самый большой класс полифенолов, и они содержатся в красном вине, чаях, какао и других продуктах. Так, например, резвератрол – флавоноид в красном вине, а куркумин, — в куркуме, специи, использующейся для приготовления многих блюд, в том числе, карри, показали свое мощное влияние на восстановление белковых структур.

Резвератрол обеспечивает схожую нейрозащиту с той, что возникала в случае с новым лекарством, как показало , например, исследование корейских ученых из Национального Университета Чонбук в прошлом году. Таких исследований довольно много: например, это или это .

Компания GlaxoSmithKlinе, вероятно, знает про резвератрол побольше других. Пять лет назад, в апреле 2008 года GSK купила компанию Sirtris Pharmaceuticals , за 720 миллионов долларов. Надо думать, фармацевтический гигант хорошо подумал, прежде чем тратить такие деньги. Sitris была лидером по исследования белка сиртуина , кодирующегося геном SIRT1. Цена образовалась, хотя бы отчасти, из надежд и пиара, когда компания опубликовала исследование об успешном лечении диабета у мышей, с использованием сиртуина. Еще тогда (и сейчас) предполагалось, что вещество потенциально способно бороться с раком и болезнью Альцгеймера. Но тогда пресса объявляла, что обнаружен источник молодости!

Действительно, от него ждали большего, чем борьбы с болезнями. Диета с ограничением калорий запускает механизм оздоровления организма от многих хронических заболеваний. Сиртуины активируются во время диеты. Резвератрол активирует сиртуины и по сути мимикрирует эту диету, но без ограничения калорий. Именно резвератрол считается ответственным за «французский парадокс » – при жирной пище и потреблении вина здоровье остается в хорошем состоянии.
8 марта 2013 года журнал Science опубликовал работу, описывающую точный механизм действие сиртуина. Дэвид Синклер, основатель Sitris в статье в Boston Globe отметил , что точка в дебатах о роли сиртуина поставлена: новое исследование безапелляционно подтвердило действие этого вещества. В статье говорилось, что исследователи Sitris готовят отчеты об успехах вещества в двух клинических испытаниях – по диабету второго типа и псориазу.

Менее чем через неделю, 13 марта 2103 года GlaxoSmithKline объявляет о закрытии офиса компании Sitris: на бумаге она остается, но, в целом, растворяется в компании. Это вызвало массу вопросов, но спикеры GSK уверяли, что исследования сиртуина будут продолжаться. Несколько формул сиртуина провалили эксперименты, но это нормальный процесс. С другой стороны, исследования в других странах и университетах продолжают приносить замечательные новости по сиртуинам (я писал раннее в этом блоге: ).

Итак: с одной стороны, есть натуральная молекула, которая прошла множество исследований и показала свою эффективность, хотя бы отчасти, а, с другой стороны, GSK идет путем сложных шарад, изобретая синтетическое вещество, которое можно запатентовать. Время между тем тикает; понятно, что компания исследует множество путей, и инновационный путь – замечательно, но что с тем, что уже известно? Новому лекарству предстоит лет десять исследований, с неизвестным исходом. Резвератрол уже прошёл большую часть пути, и даже самые ярые его критики не показали, что он абсолютно бесполезен, поэтому есть от чего отталкиваться.

Может дело в «плохой карме» резвератрола? Он успел оказаться в центре нескольких скандалов – в одном, топ-менеджеры GSK, бывшие руководители Sitris, оказались вовлечены в некрасивую историю с онлайн-продажами одной из формул резвератрола. В другом – исследователь из Университета Коннектикута был обвинён в подделке результатов сотни исследований этой молекулы, и изучениям резвератрола был нанесен тяжелый ущерб. Похоже на то, что GSK, купив Sitris, приобрела себе все что угодно, но только не источник молодости. Не делает репутацию резвератрола лучше и конспиративные теории Билла Сарди, основателя компании Resveratrol Partners LLC, продающей одну из формул этой молекулы. По его утверждениям, GSK пытается «задвинуть» резвератрол подальше, и-за проблем патентованием или каких-то других соображений.

Не хочется верить, что исследование движутся таким путем исключительно из-за идиотства отдельных людей, политических игр и денежной выгоды для корпораций. Пока это все продолжается, пейте вино, чай и какао, ешьте карри, шоколад, голубику и прочие прелести и будьте здоровы.

Предыдущие части .

За последние пару десятков лет учёным удалось открыть несколько сигнальных маршрутов в организмах животных и регуляторов, отвечающих за продление жизни. К их числу относятся инсулиновый и инсулиноподобный факторы роста 1 (IGF-1 ), мишень рапамицина млекопитающих (mTOR , mammalian target of rapamycin ) и сиртуины . Сиртуин 1 (Sitruin 1 ), — протеин, который кодируется у человека геном SIRT1. Исследований по этому протеину, гену, и его активации сегодня хватит, чтобы заполнить грузовик, и это, конечно, все равно недостаточно.

Нас интересует лишь один аспект работы этого комплекса – продление жизни. Сиртуины были найдены за работой по адаптации метаболизма к изменениям в диете и поддержке гомеостаза у млекопитающих. Так, например, активация гена, кодирующего эти протеины, была обнаружена в условиях ограниченного питания. Упрощённое объяснение – когда организм находится в условиях ограниченного питания, организм посредством этого комплекса пытается регулировать и отчасти консервировать свою деятельность, что приводит к положительным изменениям, в частности к продлению жизни и омоложению. К слову, впервые концепцию ограничения питания как метод достижения хорошего здоровья и долгой жизни сформулировал Экикен Каибара, японский философ, в 1713 году. Он скончался на следующий год в возрасте 84 лет, что по меркам 18 века было очень неплохо.

Вот почему многие надежды у людей связаны с диетой с ограниченным содержанием калорий. Вот почему ещё большие надежды связывались с методами и компонентами, которые могли бы мимикрировать такую диету в организме – например, деятельность резвератрола , молекулы, действие которого в организме приводит к активации/деактивации части тех же генов, что и при диете с ограничением калорий.

Что будет, если мимикрировать эффект диеты напрямую, путём производства сиртуина в организме? В сентябрьском номере журнала Cell Metabolism , профессор Шин-ичиро Имаи с коллегами опубликовали работу (Satoh et al. , 2013), которая и ответила на этот вопрос.

Диета с ограниченным питанием существенно увеличивает уровень протеина Sirt1 и вызывает нейронную активацию в дорсомедиальном и латеральном гипоталамическом ядре (dorsomedial and lateral hypothalamic nuclei ), чего не происходит у мыши с дефицитом Sirt1. Возникла гипотеза, что именно эти изменения в гипоталамусе защищают связанное со старением снижение митохондрических функций в скелетных мускулах, изменения в физической активности, температуре тела, потреблении кислорода и качестве сна.
Для изучения работы сиртуина была создана мышь со сверхэксперессией гена SIRT1 в большинстве тканей организма и мышь-BRASTO (brain-specific Sit1-overexpressing ) – где увеличенное производство сиртуина происходит только в головном мозге.

Мышь со сверхэкспрессией SIRT1 во всем теле не показала какого-либо существенного продления жизни. А вот BRASTO оправдала надежды. Профессор Имаи со своей командой показали, что у 20-ти месячной крысы (эквивалент 70 летнего человека) показатели здоровья и активности были аналогичным 5-ти месячному возрасту (20 летнего человека). В среднем продолжительность жизни увеличилась на 16% для самочек и 9% для самцов. Если перенести это на людей, то это равнозначно 14 дополнительным годам для женщин и лет 7 для мужчин. Иначе говоря, для женщин это означало бы продление жизни до 100 лет, для мужчин – до 80 с половиной.

Причём мыши могли есть сколько угодно, безо всякого ограничения, в любое время. BRASTO мышки лучше и крепче спали. Смерть от рака для них откладывалась, в сравнении с контрольной группой. Имаи заметил, что изменения говорят не о замедлении процесса старения, а об его откладывании; скорость старения при этом не изменялась.


Выше: Модель роли гипоталамического Sirt1 в регулировании старения и продления жизни у млекопитающих. В гипоталамусе, а именно, в дорсомедиальном и латеральном гипоталамическом ядре, Sirt1 повышает экспрессию Ox2r (рецептор орексина второго типа) и нейронную активацию. Увеличенная нейронная активация в гипоталамусе стимулирует отдел симпатической нервной системы и поддерживает митохондрические функции скелетной мускулатуры, а также тонизирует физическую активность, температуру тела и потребление кислорода. Одновременно сохраняется «молодое» качество сна в процессе старения. Все это поддерживает физиологические характеристики, присущие молодости и приводит к продлению жизни.

Это, несомненно, интересное открытие, которое послужит отправной точкой для многих исследований. Практически, для человека, сейчас это не означает почти ничего: нельзя заново родиться с повышенной экспрессией какого-то гена в гипофизе. Изменить экспрессию этого гена с помощью химических или физических методов тоже возможности пока нет. Но меня заинтересовала возможность такой специфической активации гипоталамуса посредством исключительно психологических методов, и возникла пара идей, которые я собираюсь проверить. Преимущество таких методов – в том, что можно не ограничиваться одним феноменом – на сиртуинах свет клином не сошелся. Одна из идей касается нейронной обратной связи – возможности с помощью ЭЭГ (и не только) «увлечь» мозг идеей омоложения и продления жизни. Конечно, у меня нет возможности отслеживать активацию протеинов в гипоталамусе, но, как видно, есть множество других переменных второго порядка. Да вот прям сейчас и приступлю…

Satoh, A., Brace, Cynthia S., Rensing, N., Cliften, P., Wozniak, David F., Herzog, Erik D., . . . Imai, S.-i. (2013). Sirt1 Extends Life Span and Delays Aging in Mice through the Regulation of Nk2 Homeobox 1 in the DMH and LH. Cell metabolism, 18(3), 416-430.


Сиртуины (sirtuins, S ilent I nformation R egu lator 2 (Sir2) proteins) - класс белков, обладающих свойствами гистоновой деацетилазы и монорибозилтрансферазы. Обнаружены во всех организмах- от бактерий до человека.
Дрожжевой Sir2 и некоторые, но не все, сиртуины являются деацетилазами. В отличие от других белковых деацетилаз, которые просто гидролизуют , сиртуин- опосредованое деацетилирование сочетает в себе деацетилирование остатков лизина и гидролиз НАД.

В результате гидролиза образуются О-ацетил-АДФ-рибоза, деацетилированный субстрат и никотинамид, который является ингибитором активности сиртуинов. Поэтому активность сиртуинов зависит от энергетического состояния клетки через НАД, его отношение к НАДН, уровня НАД, НАДН и никотинамида, либо через сочетание этих параметров.

Сиртуины регулируют процессы старения, транскрипции, и сопротивляемость стрессу. Регуляция метаболизма и клеточные защитные механизмы, в которых участвуют сиртуины, могут быть использованы для увеличения продолжительности жизни.

Сиртуины и старение

Исследователи Гарвардского университета выявили серию молекулярных превращений, которые приводят к старению всех без исключения эукариот.

Ядра эукариот содержат хроматин, который отсутствует у прокариот. Хроматин образован нуклеиновыми кислотами и белками. Среди последних особая роль принадлежит протеинам из группы . Из них построены , опорные структуры, на которые намотаны нити ДНК.

Гистоны принимают непосредственное участие в считывании генетической информации, иначе говоря, ее перезаписи с молекул ДНК на молекулы РНК. При плотной упаковке гистонов такая перезапись не происходит, и гены пребывают в пассивном состоянии. Чтобы тот или иной ген начал работать, связанные с ним гистоны должны несколько разрыхлиться.

В этих процессах участвуют различные ферменты, от работы которых зависит плотность гистонной упаковки. К их числу относятся ферменты из группы сиртуинов. Они вынуждают гистоны переходить в состояние с более плотной упаковкой и тем самым затрудняют включение генов.

Как мы говорили выше, сиртуины работают в клетках великого множества эукариот – от одноклеточных организмов до млекопитающих. Около 10 лет назад Дэвид Синклер () и его коллеги из Массачусетского технологического института обнаружили, что гиперэкспрессия сиртуина, который кодируется геном Sir2, замедляет старение дрожжевых клеток. Точнее, они обнаружили, что его избыток увеличивает число делений, которые клетки могут претерпевать в течение своей жизни. Дальнейшие исследования показали, что этот фермент не только меняет плотность гистонной упаковки и тем регулирует активность генов, но и участвует в ремонте повреждений ДНК.

Открытие этого эффекта вызвало большой интерес в научной среде и в средствах массой информации. Однако ученые долгое время не знали, действуют ли сиртуины в таком же качестве и в клетках высших эукариот, прежде всего млекопитающих.

Теперь на этот вопрос найден ответ, причем положительный. Он содержится в статье того же Синклера (он сейчас занимает кафедру в Гарвардском университете), его сотрудника Филиппа Обердорффера (Philipp Oberdoerffer) и их соавторов , которая появилась в журнале Cell (). Они изучили, как зависит здоровье клеток мышей от активности гена SIRT1. Этот ген у млекопитающих отвечает за производство фермента, аналогичного дрожжевому белку, который кодирует ген Sir2.

Оказалось, что функции обоих ферментов очень схожи друг с другом. Это и позволяет утверждать (или, как минимум, предполагать), что сиртуины задействованы в очень древнем механизме клеточного старения, который биологическая эволюция изобрела свыше миллиарда лет назад.

В основе этого механизма лежит постепенное ослабление способности сиртуинов одновременно выполнять обе свои главные функции. Как уже говорилось, эти ферменты уплотняют гистонные каркасы нуклеосом и тем самым предотвращают включение тех генов, продукты которых в данный момент клетке не нужны или даже вредны. Однако сиртуины в то же время помогают устранять поломки ДНК, вызванные ультрафиолетовым излучением или . При появлении таких дефектов молекулы этих белков срочно мигрируют из мест первоначального расположения в горячие точки. Такая миграция на время ослабляет сиртуиновый контроль за гистонными структурами и потому увеличивает вероятность нештатного включения различных генов.

Как показали эксперименты исследователей группы Синклера, степень этой вероятности зависит от возраста. У молодых животных поломки ДНК возникают не так уж часто, поэтому сиртуины-ремонтники обычно успевают вовремя вернуться к месту службы. Однако с возрастом клетки начинают производить больше свободных радикалов (в основном, из-за прогрессирующего износа органов внутриклеточного дыхания, ). Из-за этого сиртуины покидают места постоянной дислокации чаще и на более длительное время, а потому хуже следят за плотностью гистонов. Последствия понятны: клетки пожилых особей начинают все чаще страдать от активации ненужных генов. Такое разбалансирование генного аппарата как раз и приводит к старению организма.

В заключение стоит напомнить, что активность гена SIRT1 можно увеличить с помощью некоторых пищевых продуктов и специальных препаратов. Эту задачу выполняет сильный антиоксидант ресвератрол, который входит в состав красного винограда и красных вин. Выполненные в разных странах опыты показали, что прием ресвератрола продлевает жизнь разных позвоночных – от рыб до млекопитающих.

В настоящее время на животных успешно испытывают синтетические соединения, которые активируют SIRT1 в сотни раз сильнее ресвератрола. Хотелось бы надеяться, что такие вещества могут замедлять процессы старения и у людей.

(Портал «Вечная молодость» www.vechnayamolodost.ru)

Полный обзор Синклера по данной теме :

Отрицательное действие сиртуинов

Ученые университета Южной Калифорнии , работающие под руководством доктора Вальтера Лонго (Valter Longo), утверждают, что в некоторых случаях гиперэкспрессия белков семейства сиртуинов, известных благодаря способности замедлять старение, вызывает окислительные повреждения клеток мозга.

Существуют свидетельства участия белков Sir2 в продлевающих жизнь механизмах (о чем мы говорили выше), ассоциированных с ограничением калорийности рациона у ряда организмов (но не у всех). Кроме того, авторы продемонстрировали, что отсутствие сиртуинов в клетках дрожжей еще больше продлевает жизнь «голодающим» клеткам.

SirT1 – вариант Sir2, содержащийся в клетках млекопитающих, – участвует в управлении множеством физиологических процессов, в том числе метаболизмом глюкозы, восстановлением повреждений ДНК и клеточной гибелью. Он также регулирует активность ряда факторов, участвующих в формировании стресс-реакций.

Согласно результатам работы группы Лонго, нейроны крыс в клеточной культуре гораздо чаще выживают при воздействии соединений, индуцирующих окислительный стресс, если в питательную среду добавить ингибитор SirT1 ().

В мозге живых генетически модифицированных мышей с нокаутированным геном SirT1 уровень окислительного стресса оказался более низким, чем у мышей с нормальным синтезом этого белка. Но продолжительность жизни мышей, не имеющих гена SirT1, была меньше, чем у обычных, независимо от калорийности рациона.

Полученные результаты свидетельствующие о том, что SirT1, как и его аналог Sir2 в клетках дрожжей, обладает проокислительной функцией . Однако они подтверждают, что сиртуины выполняют как положительную, так и отрицательную роли . Опираясь на полученные данные, Лонго предупреждает, что разработка стимулирующих активность SirT1 препаратов для клинического использования еще очень преждевременна, т.к. необходимо еще получить убедительные доказательства безопасности их длительного приема .

Сиртуины и NF-kappaB

Как же сиртуины осуществляют свои регуляторные функции? Исследователи из Division of Endocrinology, Gerontology, and Metabolism , Stanford University School of Medicine под руководством опубликовали работу по связи сиртуинов и транскрипционного фактора NF-kappaB ().
NF-kappaB (NF-kB)- универсальный фактор транскрипции, контролирующий экспрессию генов иммунного ответа, и клеточного цикла. Нарушение регуляции NF-kB вызывает воспаление, аутоиммунные заболевания, а также развитие вирусных инфекций и рака. Семейство NF-kB состоит из 5 белков: NF-kB1 (или p50), NF-kB2 (или p52), RELA (или p65), RelB и c-Rel,
образующих 15 комбинаций димеров. Все белки семейства объединяет
наличие домена гомологии REL, который обеспечивает образование белковых димеров, связывание NF-kB с ДНК и с цитозольным ингибиторным белком IkB. Фактор NF-kB проявляет активность только в димерной форме, причём наиболее распространённые формы - димер субъединиц p50 или p52 с субъединицей p65.
NF-kB активируется целым рядом стимулов, включая (такие как TNF и интерлейкин 1), T- и B-клеточные митогены, бактериальные и вирусные продукты (все лиганды толл-подобных рецепторов, например липополисахарид или двухцепочечная вирусная РНК) и факторы стресса (такие как или ультрафиолет).
В цитоплазме клетки NF-kB находится в неактивном состоянии в комплексе с ингибиторным белком IkB. Стимулирующий агент приводит к тому, что IkB фосфорилируется под действием киназы IKK (IkB-киназа), что приводит к деградации IkB в результате действия протеосомы 26S. При этом NF-kB высвобождается от ингибирующего комплекса, транслоцируется в ядро и активирует транскрипцию контролируемых генов.

Ученые из Стенфордского университета пришли к выводу, что один из членов семейства сиртуинов- SIRT6- действует через ослабление сгнального пути NF-kB. SIRT6 взаимодействует с субъединицей NF-kB RELA и деацетилирует лизин 9 гистона H3 (H3K9) на промоторах генов- мишеней NF-kB. В клетках с недостатком SIRT6 гиперацетилирование H3K9 на этих промоторах приводит к усилению связывания RELA с промотором, усилению NF-kB- зависимой модуляции экспрессии генов, апоптозу и . Анализ генома показал увеличение активности NF-kB-регулируемой экспрессии генов в различных SIRT6- дефицитных тканях in vivo. Кроме того, недостаток RELA у мышей с дефицитом SIRT6 может предотвращать раннюю летальность и развитие дегенеративных синдромов.
Вывод: SIRT6 ослабляет действие NF-kB через деацетилирование H3K9. Гиперактивация NF-kB приводит к преждевременному и нормальному старению.

Сиртуины и апоптоз

Белок SIR-2.1 C. elegans задействован в процессе старения, его аналог у млекопитающих SIRT1, как уже говорилось выше, участвует в различных клеточных процессах, в том числе репрессии транскрипции и ответе на стресс. Ученые из Wellcome Trust Centre for Gene Regulation and Expression , University of Dundee под руководством доказали, что SIR-2.1 необходим для запуска апоптоза в ответ на повреждение ДНК , а кроме того SIR-2.1 работает параллельно - подобному гену cep-1 (). Этот cep-1- независимый проапоптотический путь не требует транскрипционного фактора daf-16 FOXO. Цитологический анализ SIR-2.1 свидетельствует о новом механизме индукции апоптоза. В процессе апоптоза SIR-2.1 меняет свою субклеточную локализацию с ядра на цитоплазму и временно локализуется на периферии ядра с гомологом белка Apaf-1 у нематод-белком CED-4. Транслокация SIR-2.1- раннее событие апоптоза эмбриональных клеток, происходит независимо от запуска апоптоза и cep-1. Возможно, транслокация SIR-2.1 связана с индукцией апоптоза, связанного с повреждением ДНК.

Митохондриальные сиртуины



Как мы только что отметили, локализация сиртуинов имеет значение для их функционирования, они могут локализоваться не только в ядре и цитоплазме, но и в митохондриях. Сиртуины участвуют в регуляции функционирования митохондрий. В митохондриях содержатся Sirt3, Sirt4 и Sirt5. Для Sirt3 известна одна мишень, так же, как и для Sirt4, в то время как для Sirt5 мишени неизвестны. В Laboratory of Biochemistry , Department of Physiological Chemistry Ruhr-University Bochum идентифицировали мишени для Sirt3 и Sirt5 (). Ученые показали, что Sirt3 деацетилирует и тем самым активирует центральный регулятор метаболизма в - глутаматдегидрогеназу. Кроме того Sirt3 деацетилирует и активирует изоцитратдегидрогеназу 2, фермент, который обеспечивает регенерацию антиоксидантов и катализирует ключевые реакции цитратного цикла .
Обнаружено, что N- и C- концы Sirt3 регулируют его активность в отношении глутаматдегидрогеназы и пептидного субстрата, что свидетельствует о роли этих областей в распозновании субстрата и регуляции сиртуинов.
Sirt5, в отличие от Sirt3, не деацетилирует белки матрикса митохондрий. Он деацетилирует цитохром C - белок межмембранного пространства митохондрий, занимающий центральное место в метаболизме кислорода, а также в инициации апоптоза. Sirt5 может быть перемещен в митохондриальное межмембранное пространство и в матрикс, что свидетельствует о том, что локализация важна для регуляции Sirt5 и выбора субстрата.

Негативная регуляция сиртуинов

Как мы говорили выше, сиртуины вовлечены во множество важнейших клеточных процессов- генетический контроль, старение, выживание клеток, метаболизм и репарацию ДНК. У дрожжей Sir2 обеспечивает транскрипционное "молчание" хроматина, подавляет рекомбинацию между повторами, подавляет клеточное старение. Но как же регулируется функционирование сиртуинов? Исследователи из лаборатории под руководством Hiten Madhani , Department of Biochemistry and Biophysics , University of California, San Francisco , провели работу по поиску в геноме дрожжей Saccharomyces cerevisiae негативных регуляторов активности сиртуинов в репортерном гене, находящемся сразу за "молчащей" областью (). В ходе проведенного анализа было идентифицировано 40 областей, 20 из которых ранее не связывали с регуляцией сиртуинов. В добавок к хроматин-ассоциированным факторам, препятствующим внешнему сайленсингу (Bdf1, SAS-I complex, Rpd3L complex, Ku), ученые идентифицировали в качестве анти-сайленсингового фактора Rtt109 (ацетилтрансферазу лизина 56 гистона H3, связанную с репарацией ДНК). Эти результаты свидетельствуют о том, что Rtt109 действует независимо от своих предположительных эффекторов- Rtt101 куллина, Mms1, Mms22, и демонстрирует неожиданное взаимодействие между ацетилированием H3K56 (лизина 56 гистона H3) и H4K16 (лизина 16 гистона H4). В ходе исследования также были идентифицированы субъединицы медиатора (Soh1, Srb2, and Srb5) и факторы метаболизма мРНК (Kem1, Ssd1), что может свидетельствовать о том, что слабый сайленсинг осуществляется через влияние на структуру мРНК. Также были идентифицированы некоторые метаболические факторы- PAS-киназа Psk2, митохондриальный гомоцистеиновый детоксикационный фермент Lap3, матураза Isa2. Предполагается, что PAS- киназа интегрирует метаболические сигналы для контроля активности сиртуинов .

(). Получены данные о том, что Sirt1 в раковых клетках экспрессируется значительно сильнее, чем в нормальных эпителиальных клетках простаты, об этом свидетельствует уровень белка, мРНК и ферментативная активность сиртуина. Кроме того, в раковых клетках сиртуин экспрессируется сильнее, чем в окружающих простату нормальных тканях. Ингибирование Sirt1 через никотинамид и сиртинол (на уровне активности) или с помощью коротких РНК, образующих шпильки (shRNA) (на генетическом уровне) приводит к значительному снижению роста и жизнеспособности человеческих клеток рака простаты , в то время как на нормальных клетках такого эффекта не наблюдалось. Было обнаружено, что ингибирование Sirt1 приводит к усилению ацетилирования и транскрипционной активности FoxO1 в клетках рака простаты. Ученые пришли к выводу обнаружили экспрессию SIRT1 в культуре человеческих кератиноцитов ().
Воздействие ультрафиолета и перекиси водорода на кожу подавляет SIRT1. В этот процесс вовлечена АФК- зависимая активация . Активатор SIRT1, антиоксидант ресвератрол, защищает от клеточной смерти, индуцированной ультрафиолетом и перекисью водорода, в то время как ингибиторы сиртуинов, сиртинол и никотинамид усиливают гибель клеток. Активация SIRT1 отрицательно регулирует УФ- и перекись- индуцированное ацетилирование p53 , никотинамид, сиртинол и siRNA усиливают ацетилирование p53, ресвератрол это ацетилирование подавляет. SIRT1 участвует в УФ-индуцированном фосфорилировании AMPK, ацетил-КоА и киназы PFK-2. Эти данные улучшают понимание механизмов УФ-зависимого старения кожи и свидетельствуют о том, что активаторы SIRT1, такие как ресвератрол, могут применяться в качестве средств анти-старения для кожи.

В заключение

Сиртуины- белки, имеющие важнейшее значение в клетке, регулирующие главные клеточные процессы. Но действие их неоднозначно. В связи с этим возникают вопросы:
1) Чего больше в действии сиртуинов- положительного или отрицательного?
2) Как можно использовать сиртуины для борьбы со старением?
3) Насколько это будет эффективно и безопасно?
4) На что действуют сиртуины?
5) Как можно регулировать их активность?
6) Каковы перспективы использования регуляторов активности сиртуинов для лечения различных заболеваний?
и мн. др.