Основные характеристики люминесцентных ламп. Срок службы люминесцентных ламп: выбор прибора для безопасного использования

Что такое пульсации освещённости и яркости. Формула для расчёта пульсаций.

Коэффициент пульсаций освещённости характеризует колебания во времени светового потока, падающего на единицу поверхности. Коэффициент пульсаций освещённости определяется отношением амплитуды колебаний освещённости к их среднему значению и вычисляются по формуле:

где Емакс – максимальное значение освещённости за период её колебания, Емин – минимальное значение освещённости за период её колебания, Еср – среднее значение освещённости за тот же период.

В случае, когда анализируются пульсации от источников света, питающихся от сети переменного тока, т.е. форма пульсаций близка к синусоидальной, можно использовать упрощённую формулу для расчёта пульсаций:

В формуле (2) в качестве среднего берется среднеарифметическое значение. При использовании для расчёта пульсаций формулы (2), коэффициент пульсаций, очевидно, никогда не может превысить значение 100%. Если же при расчёте пульсаций в качестве среднего брать, например, среднеквадратичное значение, то, при наличии в измеряемом световом потоке коротких по времени, но больших по амплитуде пульсаций, рассчитанный по формуле (1) коэффициент пульсаций может значительно превысить 100%. Что, надо сказать, вполне допустимо. В недавно принятом новом ГОСТ Р 54945-2012 "Здания и сооружения. Методы измерения коэффициента пульсации освещенности" приведена общая формула для расчета коэффициента пульсации освещенности:

Таким образом, расчёт пульсаций по формуле (2) допустим только для светового потока, колебания которого близки к гармоническим. При наличии в световом потоке значительной импульсной составляющей необходимо для расчёта коэффициента пульсаций применять формулу (3). В общем случае, формулу (2) для расчета коэффициента пуьсации освещенности или яркости можно применять только при прямом подключении источника света к сети переменного тока или при использовании ЭМПРА. При использовании ЭПРА, электронных драйверов, регуляторов мощности (диммеров), а также при измерении коэффициента пульсации яркости мониторов, для расчета коэффициента пульсации следует применять формулу (3).

Влияние пульсаций на здоровье человека. Частота пульсаций. Частотный спектр пульсаций.

Широко распространено мнение, что человеческий глаз чувствует световые пульсации частота которых не превышает нескольких десятков Герц. На этом допущении построено воспроизведение видеоизображений в кино и телевидении – там частота смены кадров составляет 25 Гц, 50Гц и более, что воспринимается глазом человека как целостное во времени, плавно изменяющееся изображение. Дело в том, что мозг человека перестает успевать полноценно обрабатывать ту часть поступающей ему от органов зрения информации, которая изменяется с частотой выше нескольких десятков Герц.

Иными словами, если в воспринимаемой органами зрения человека информации присутствует пульсация освещённости или яркости, частотой ниже указанных, то она воздействует непосредственно на сетчатку глаза человека, затем поступает в зрительный тракт и уже через наружное коленчатое тело, зрительную радиацию, анализируется в первичной зрительной коре. В результате, мы можем описать условия получения зрительной информации: яркость и контраст изображения, цвета и оттенки, есть ли пульсации яркости или освещённости. Если же параметры изображения нас не устраивают, то мы пытаемся как-то приспособиться к их восприятию и, в конце концов, сознательно ограничиваем время визуального восприятия этой информации ввиду дискомфорта.

Однако медицинские исследования показали, что органы зрения и мозг человека продолжают воспринимать и реагировать на изменения воспринимаемой зрительной информации вплоть до частоты 300Гц. Такие изменения в воспринимаемой органами зрения информации оказывают уже невизуальное воздействие. В этом случае, свет, попадающий в глаз, проделывает путь к супрахиазматическим клеткам и паравентрикулярным ядрам гипоталамуса, а также к шишковидной железе. И тогда свет управляет уже нашим гормональным фоном, который влияет на циркадные (суточные) ритмы, эмоциональную сферу, работоспособность и многие другие аспекты жизнедеятельности. Многие, наверное, уже сталкивались с таким невизуальным воздействием пульсаций искусственного освещения в виде ощущения необъяснимого чувства дискомфорта, усталости или недомогания во, вроде бы, хорошо и ярко освещённых помещениях или при работе с компьютером.

Самое опасное в невизуальном воздействии света – это то, что мы не чувствуем напрямую его влияния на наш организм и не можем принять меры для уменьшения опасных последствий такого воздействия на наше здоровье. Невизуальное воздействие света может приводить к расстройству биологических ритмов человека и к "циркадным стрессам", которые, в свою очередь, могут приводить к развитию таких заболеваний, как депрессии, бессонница, паталогии сердечно-сосудистой системы и рак. По-видимому, невизуальное воздействие света на организм человека, заметно более глубокое, чем визуальное, хотя, оно ещё очень мало изучено.

Для светового потока, пульсация которого превышает частоту 300Гц, какого-либо заметного воздействия на организм человека выявлено не было, ввиду того, что на такие быстрые изменения интенсивности светового потока перестает уже реагировать сетчатка глаза человека.

Нормативные акты, устанавливающие требования к уровню пульсаций искусственного освещения

Измерения коэффициента пульсаций искусственного освещения.

Производители современных качественных светильников стараются удовлетворить требованиям нормативных документов, устанавливающих допустимые нормы коэффициента пульсаций освещённости и яркости. Однако, на рынке присутствует большое количество некачественных, контрафактных и несертифицированных должным образом светильников, в которых коэффициент пульсаций яркости намного превышает установленные нормы.

Таким образом, мы видим, что качественный пульсметр должен иметь хорошо сформированную частотную характеристику, чтобы обеспечить измерение коэффициента пульсации светового потока любых сигналов с частотами до 300 Гц и, одновременно, не реагировать на пульсации светового потока, частотой выше 300Гц, на которых работают качественные ПРА. Такую качественную частотную фильтрацию измеряемого светового потока можно осуществить цифровой обработкой сигнала, которая, например, реализована в фотоголовке ФГ-01, входящей в состав люксметров-пульсметров-яркомеров серии "Эколайт" . Амплитудно-частотная характеристика фотоголовки ФГ-01 приведена на Рис.1


Источники пульсаций. Типы ламп, ЭПРА. Причины пульсаций ламп. Методы борьбы с пульсациями.

Наличие пульсаций освещённости вызвано исключительно источниками искусственного света. Основными источниками искусственного света являются различные осветительные приборы, которые могут быть построены на различных типах ламп. На данный момент времени, в основном, используются три типа ламп - лампы накаливания, люминесцентные лампы и светодиодные лампы или светильники. Рассмотрим все три типа ламп с точки зрения уровня пульсаций света, ислучаемого ими.

Лампы накаливания - самый распространённый и давно известный тип осветительных приборов. Обычно работают напрямую от осветительной сети переменного тока напряжением 220 Вольт и частотой 50Гц. Ввиду того, что лампа накаливания излучает свет на обеих полуволнах переменного напряжения сети, её яркость изменяется с частотой 100Гц. Уровень пульсаций яркости лампы накаливания зависит от инерционности нити накаливания - т.е. того, насколько эта нить успевает нагреться и остыть в течение каждого полупериода питающего напряжения. В общем случае, чем выше мощность лампы накаливания, тем ниже значение коэффициента пульсации её яркости ввиду более массивной и, следовательно, инерционной нити накаливания.

К обычным лампам накаливания можно также отнести так называемые "галогенные" лампы, в которых в качестве светоизлучателя также выступает нить накаливания, а колба лампы заполнена инертным газом, улучшающим её характеристики. В таких лампах та же природа пульсаций светового потока, что и в обычных лампах накаливания, но есть некоторые особенности, связанные с разнообразием конструкций таких ламп и нет возможности указать прямую зависимость мощности галогенной лампы и значения коэффициента пульсаций её светового потока. Несколько результатов измерений коэффициента пульсаций яркости ламп накаливания приведены в Таблице 1.

Необходимо отметить, что лампы накаливания, в том числе и галогенные, допускают питание постоянным током (при условии соблюдения заявленных параметров мощности ламп). В случае питания ламп накаливания постоянным током, пульсация яркости у них отсутствуют.

Газоразрядные (люминесцентные) лампы в качестве источника света используют электрический разряд в газовой среде, энергия которого затем преобразуется в видимый свет при помощи специального состава (люминофора), нанесённого на стенки колбы люминесцентной лампы. В отличие от ламп накаливания, люминесцентные лампы могут работать только от переменного напряжения питания, необходимого для формирования электрического разряда. Поэтому, при работе люминесцентных ламп всегда присутствует пульсация света. Люминофор, нанесённый на стенки колбы лампы, в зависимости от своего состава, обладает некоторой инерционностью, которая в большей или меньшей степени сглаживает пульсации от электрического разряда в колбе люминесцентной лампы.

Большое значение для уровня пульсаций люминесцентной лампы имеет электрическая схема, управляющая работой люминесцентной лампы. В старых и дешёвых схемах с электромагнитными пускорегулирующими аппаратами (ЭмПРА) люминесцентные лампы получают питание из осветительной сети напряжением 220 Вольт и частотой 50 Гц. Поэтому яркость этих ламп пульсирует с частотой 100 Гц (т.к. люминесцентная лампа светит каждый полупериод питающего напряжения, частотой 50 Гц). В качественных современных светильниках на люминесцентных лампах используют электронные пускорегулирующие автоматы (ЭПРА), которые, при питании люминесцентных ламп, преобразуют входную частоту питающей сети в частоты выше тех, которые чувствует человек (т.е. больше 300 Гц). В малогабаритных люминесцентных лампах со стандартным цоколем, предназначенными для замены ламп накаливания, ЭПРА обычно входит в состав такой лампы.

Качественные ЭПРА обеспечивают оптимальные условия работы люминесцентных ламп, значительно уменьшая не только коэффициент пульсации света, излучаемого лампой, но и заметно повышая долговечность и эффективность работы люминесцентных ламп. Однако качество разных ЭПРА может сильно отличаться как в плане долговременной надёжности работы, так и по значению коэффициента пульсаций света, излучаемого подключённой лампой. Несколько результатов измерения коэффициента пульсаций яркости люминесцентных ламп приведены в Таблице 1.

Светодиодные лампы и светильники в качестве светоизлучающего элемента используют кристалл полупроводника. Физические принципы работы светодиода позволяют излучать им свет только одной длины волны, т.е. только одного определённого цвета, в зависимости от типа используемого полупроводника - от ближнего ультрафиолета, практически любой цвет видимого диапазона и до инфракрасного диапазона. Для создания светодиодных светильников белого цвета используют либо комбинированные многоцветные светодиоды, либо светодиоды, кристалл полупроводника которых покрыт слоем люминофора, переизлучающего белый свет.

Светодиоды могут работать как от переменного, так и постоянного питающего напряжения. При работе от постоянного питающего напряжения, пульсация излучаемого света у светодиодов отсутствует. При этом, светодиод излучает свет только при положительном напряжении между анодом и катодом. Это означает, что при подаче на светодиод напряжения частотой 50 Гц, он будет излучать свет только в положительные периоды питающего напряжения. Таким образом, частота пульсаций яркости светодиода составит 50Гц (Рис.2).


фотоголовки ФГ-01 Эколайт-АП ".

Одиночный светодиод начинает излучать свет, когда напряжение между его анодом и катодом достигает от 1,5 до 3 Вольт, т.е. при подключении одиночных или цепочек светодиодов к осветительной сети, напряжением 220 Вольт и частотой 50 Гц необходимо использовать понижающие преобразователи напряжения. Качественный преобразователь напряжения в светодиодном светильнике может обеспечить надёжную и экономичную работу светодиодного светильника без пульсаций светового потока. Однако часто встречаются некачественные преобразователи напряжения для светодиодных светильников, в результате которых светодиодные светильники не только работают плохо и недолговечно, но и обладают высокими значениями коэффициента пульсаций излучаемого света.

Влияние регуляторов мощности ламп (диммеров) на значение коэффициента пульсации.

Необходимо упомянуть о негативном влиянии на значение коэффициента пульсаций ламп устройств регулировки мощности (или яркости). Чаще всего в этом качестве используются тиристорные регуляторы (или диммеры). Их принцип работы основан на том, что питающее синусоидальное напряжение сети подается на лампу не непрерывно, а частями. Чем выше установлена яркость лампы, тем большая часть полупериода синусоидального питающего напряжения на нее подается, а чем ниже установлена яркость лампы, тем меньшая часть полупериода синусоидального питающего напряжения подается на лампу. Использование диммеров для регулировки яркости ламп приводит к увеличению коэффициента пульсаций. Вид пульсаций светового потока лампы накаливания при использовании диммера приведён на Рис.3.



Примечание. Все изображения формы (осциллограммы) пульсаций и их частотных характеристик выполнены при помощи фотоголовки ФГ-01 и бесплатно распространяемого ПО анализатора пульсаций светового потока "Эколайт-АП ".

Необходимо отметить, что использование диммера с лампами накаливания приводит только к увеличению коэффициента пульсаций яркости за счёт того, что, её нить успевает сильнее остыть за время отсутствия напряжения. При этом, для люминесцентных и светодиодных ламп с ЭПРА применение диммера вообще недопустимо, ввиду того, что он задает ЭПРА нештатный режим работы, что приводит не только к значительному увеличению коэффициента пульсаций яркости, но и к работе всего светильника в нештатном режиме, которая может закончится его поломкой.

В Таблице 1 приведены несколько типов ламп, которые были протестированы с помощью фотоголовки ФГ-01 люксметра-пульсметра-яркомера "Эколайт" на уровень коэффициента пульсаций. Мощность ламп регулировалась при помощи диммера. Хорошо видно, что использование диммера существенно ухудшает характеристики люминесцентных ламп. Максимальный уровень коэффициента пульсаций яркости светодиодной лампы объясняется, по-видимому, отсутствием в её конструкции качественного преобразователя напряжения.

Таблица 1. Зависимость коэффициента пульсаций яркости ламп разного типа от регулировки уровня их выходной мощности при помощи диммера.

Тип, мощность, описание лампы

Кп, % (мощность 100%)

Кп, % (мощность 50%)

Накаливания, 75 Вт 10,8 15
Накаливания, 60 Вт 11 15
Накаливания, 40 Вт 15,4 20
Галогенная, 60 Вт 13 16
Люминесцентная, цоколь, 9 Вт, тип 1 4,7 43,2
Люминесцентная, цоколь, 9 Вт, тип 2 4,5 15,9
Люминесцентная, цоколь, 11 Вт 7,3 15,8
Люминесцентная, ЛБ-40, 40 Вт, ЭмПРА 41,5 -
Люминесцентная, PL-9W, 9 Вт, ЭмПРА 42,2 -
Светодиодная, 1,5 Вт 100 100
Пульсации яркости мониторов. Причины наличия у мониторов пульсаций яркости. Пульсации ЭЛТ и ЖК мониторов. Биения. Методы борьбы с пульсациями мониторов.

Существующие санитарно-гигиенические нормативы содержат нормы на коэффициент пульсаций только для освещенности рабочего места. Однако нельзя не упомянуть о пульсациях яркости электронных средств отображения информации – в первую очередь о пульсациях яркости экранов, дисплеев и мониторов компьютеров, телевизоров, игровых приставок, терминалов, рекламных и информационных табло, пультов управления машинами и установками и т.п. Также пульсацией яркости обладают проекционные изображения от проекторов, на экранах кинотеатров и т.д. Необходимо отметить, что пульсация яркости устройств отображения информации оказывает намного более негативное влияние на самочувствие и здоровье человека, чем пульсация общей освещенности рабочего места по той причине, что человек вынужден внимательно вглядываться и вчитываться в представляемую на них информацию. Наличие пульсаций яркости у мониторов, дисплеев и т.п. приводит к быстрой утомляемости органов зрения и отделов мозга, отвечающих за восприятие и анализ зрительной информации. Воздействие пульсаций яркости экранов дисплеев и мониторов в течение длительного времени может привести к хроническим заболеваниям органов зрения

Природа пульсаций яркости экранов мониторов, дисплеев и других устройств отображения информации зависит от их конструкции. Наиболее распространены устройства на электронно-лучевых трубках (ЭЛТ) и плоскопанельные устройства на жидких кристаллах (ЖК, LCD, TFT и т.п.), светодиодах (LED, OLED и т.п.), "электронных чернилах" (E-Ink и т.п.).

В ЭЛТ-мониторах изображение создается пучком электронов, который построчно сканирует всю плоскость экрана монитора и формирует изображение, последовательно засвечивая пиксели люминофора, покрывающего внутреннюю поверхность ЭЛТ- экрана. Пульсация яркости у ЭЛТ-монитора вызвана тем фактом, что электронный пучок засвечивает текущую точку люминофора лишь на короткое время, после чего переходит к засветке следующей точки.

В следующий раз данная точка экрана ЭЛТ-монитора будет засвечена только после того, как электронный пучок просканирует весь кадр изображения. Таким образом, частота пульсаций яркости ЭЛТ- монитора равна частоте кадровой развёртки. Уровень коэффициента пульсаций яркости ЭЛТ-мониторов обычно очень близок к 100% (Рис.4).


Примечание. Все изображения формы (осциллограммы) пульсаций и их частотных характеристик выполнены при помощи фотоголовки ФГ-01 и бесплатно распространяемого ПО анализатора пульсаций светового потока "Эколайт-АП ".

Это по сути означает, что ЭЛТ-мониторы нельзя использовать для постоянной длительной работы, в компьютерных классах для обучения детей, в качестве устройств отображения информации для операторов опасных производств, диспетчеров на транспорте и авиации и прочих рабочих местах с повышенными требованиями к уровню внимания и реакции оператора.

В плоскопанельных мониторах, в отличие от ЭЛТ-мониторов, изображение практически всегда формируется статическим образом. То есть сформированный пиксель изображения постоянно сохраняет своё состояние до момента, когда это состояние требуется изменить. Таким образом, сам принцип формирования изображения в основной массе плоскопанельных дисплеев исключает появление пульсаций. Однако, в большинстве плоскопанельных устройств, используются системы задней подсветки. Эти системы подсветки представляют из себя системы специализированных газоразрядных ламп либо светодиодов со всеми особенностями работы, описанными в разделах про газоразрядные и светодиодные лампы. То есть, в зависимости от схемы управления подсветкой, может возникать значительная пульсация яркости подсветки. Необходимо заметить, что во всех моделях плоскопанельных дисплеев есть функция регулировки яркости задней подсветки. Наши исследования показали, что очень часто для регулировки яркости подсветки плоскопанельного дисплея используется импульсная модуляция, т.е. лампы подсветки периодически включаются на время, пропорциональное установленной яркости подсветки. Это приводит к появлению пульсаций яркости ламп подсветки у плоскопанельных мониторов. Причём в некоторых измеренных нами экземплярах мониторов компьютеров и ноутбуков коэффициент пульсации ламп подсветки при средних значениях яркости достигал 80% при частоте пульсаций 30Гц.

В отличие от ЭЛТ-мониторов, коэффициент пульсации ламп подсветки плоскопанельных дисплеев можно существенно снизить, выставив яркость подсветки экрана близкую к максимальной. Для установки комфортных значений яркости можно задействовать программные регулировки, не влияющие на лампы подсветки плоскопанельного монитора. К сожалению, программная регулировка яркости доступна только в компьютерах.

Пример пульсации ламп подсветки мониторов при разных уровнях выставленной яркости приведены на Рис.5 и Рис.6.





Примечание. Все изображения формы (осциллограммы) пульсаций и их частотных характеристик выполнены при помощи фотоголовки ФГ-01 и бесплатно распространяемого ПО анализатора пульсаций светового потока "Эколайт-АП ".

Нами были проведены измерения коэффициента пульсаций яркости мониторов у сотрудников нашей компании. Там, где были обнаружены пульсации яркости подсветки мониторов, и там, где была возможность, мы провели регулировку яркости ламп подсветки до уровней, когда коэффициент пульсации яркости подсветки минимален. После этих мероприятий все сотрудники отметили улучшение своего самочувствия, снижение утомляемости и повышение работоспособности при работе с монитором компьютера.

Наложение пульсаций. При оценке коэффициента пульсации яркости мониторов, необходимо помнить об эффекте наложения пульсаций от устройства отображения информации и пульсаций от источников искусственного освещения. Поскольку, свет от разных источников суммируется в каждой точке пространства и создает на поверхности экрана определённую освещенность, то от экрана монитора буде исходить суммарный световой поток (излучённый и отражённый) с пульсациями, частоты которых будут равны суммарной и разностной частотам пульсаций искусственного освещения и пульсациям от экрана монитора. Могут возникать, так называемые биения уровня яркости, выражающиеся в появлении низкочастотных пульсаций яркости монитора.

Эколайт-АП ", провести полный анализ регистрируемого светового потока по величине, уровню коэффициента пульсаций, форме пульсаций. Также есть возможность провести частотный анализ пульсаций светового потока и освещенности для выявления причин их возникновения. Примеры работы анализатора пульсаций приведены на Рис.2, 3, 4, 5, 6

У люксметра-пульсметра-яркомера "Эколайт" отдельно стоит отметить функцию "Измерение искусственной освещенности и коэффициента пульсаций в присутствии естественного освещения" , учитывающую уровень естественного освещения и позволяющую оператору проводить измерения искусственной освещенности и ПРАВИЛЬНЫЙ (!!!) расчет коэффициента пульсации искусственной освещенности в светлое время суток.

ВСЕ ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ СВЕТОВОЙ СРЕДЫ ◄

."◄

Люминесцентные лампы - это газоразрядные источники света. Их световой поток формируется за счет свечения люминофоров, на которые воздействует ультрафиолетовое излучение разряда. Его видимое свечение обычно не превышает 1-2%. Люминесцентные лампы (ЛЛ) получили широкое применение в освещении помещений разного типа. Их световая отдача в разы больше, чем у привычных ламп накаливания. При обеспечении ряда условий (качественное электропитание, использование балласта, соблюдение ограничений по числу коммутаций), такие лампы могут в десятки раз дольше служить, нежели лампы накаливания. Сегодня мы с вами познакомимся с историей люминесцентной лампы и принципом ее работы.

Область использования

Линейные люминесцентные лампы давно зарекомендовали себя как наиболее удобный и экономичный способ освещения общественных помещений: офисов, учебных заведений, магазинов, больниц, предприятий и так далее. С появлением современных технологий, позволяющих создать компактную ЛЛ под обычные патроны марки Е14 или Е27, они быстро завоевали популярность в быту и стали вытеснять лампы накаливания. Чаще всего в обиходе используют экономные люминесцентные лампы на 18 или больше ватт.

Благодаря использованию электронных балластов вместо привычных электромагнитных удается значительно улучшить эксплуатационные характеристики ламп - избавиться от гула и мерцания, повысить экономичность и компактность.

Главными преимуществами люминесцентных ламп по сравнению с привычными всем лампами накаливания являются высокая светоотдача (превышает в несколько раз), и более длительный срок работы (превышает в несколько десятков раз). Их применение особенно актуально в случаях, когда освещение не выключается на протяжении длительного времени, так как именно включение является самым сложным режимом и от количества включений зависит срок работы. Таким образом, несмотря на более высокую стоимость, люминесцентные лампы позволяют значительно сэкономить.

История

Первое подобие светильника с люминесцентной лампой было разработано в далеком 1856 году Генрихом Гайсслером, который добился свечения от стеклянной трубки, заполненной газом и возбужденной с помощью соленоида. В 1893 году на выставке в Чикаго Томас Эдисон впервые продемонстрировал публике люминесцентное свечение. Через год, М.Ф. Моором была создана лампа, наполненная азотом и углекислым газом и испускающая розово-белый свет. Успех этого изобретения был весьма ограниченным. В 1901-м Питер Хьюитт создал ртутную лампу, испускающую сине-зеленый свет. Именно из-за цвета она была непригодна для практического применения. Тем не менее, изобретение Хьитта было близко к современным лампам и имело намного больший потенциал, чем лампы предшественников. В 1926-м Эдмунд Джермер вместе со своими сотрудниками предложил увеличить давление внутри колбы и покрыть ее флуоресцентным порошком, преобразующим ультрафиолетовое цветное излучение в однородное белое. Вскоре компания General Electric купила у изобретателя патент, и под его руководством, к 1938 году вывела ЛЛ на широкий рынок. Таким образом, именно с Джермером часто ассоциируют начало истории люминесцентных ламп.

Принцип работы

Когда люминесцентная лампа подключается к электросети, между двумя электродами, расположенными в ее противоположных концах, возникает электрический разряд. Благодаря прохождению тока через пары ртути, которыми заполнена внутренняя полость лампы, возникает УФ-излучение, которое незаметно для человеческого глаза. С помощью люминофора, нанесенного на стенки, это излучение превращается в видимый свет. Таким образом, люминофор призван поглощать УФ излучение и излучать видимый свет. Меняя его состав можно варьировать оттенок свечения лампы.


Преимущества и недостатки люминесцентных ламп

ЛЛ имеют такие достоинства:

  1. Высокие показатели светоотдачи и КПД.
  2. Разнообразие оттенков свечения.
  3. Рассеянный свет.
  4. Длительный срок службы.

Недостатки люминесцентных ламп:

  1. Химическая опасность. Причина в токсичных парах ртути.
  2. Неравномерный, неприятный для некоторых свет, вызывающих искажение цвета освещенных поверхностей. Лампы, которые лишены этой проблемы, имеют меньшую светоотдачу.
  3. Люминофор со временем "срабатывается", в результате меняется спектр, уменьшается светоотдача и падает КПД.
  4. В случае удвоенной частоты питающей сети, может возникнуть мерцание некоторых ламп.
  5. Наличие пускорегулирующих аппаратов.
  6. Низкий коэффициент мощности.

Подключение

С электротехнической точки зрения, люминесцентная лампа - это устройство с отрицательным сопротивлением. Это значит, что чем более сильный ток через нее проходит, тем больше падает сопротивление. В этой связи при непосредственном подключении лампы к электросети она быстро выходит из строя из-за чересчур сильного тока. Эта проблема решается путем подключения лампы через так называемый балласт.

В простейшем варианте в качестве балласта выступает простой резистор. Его недостаток состоит в потере значительного количества энергии. Избежать потерь можно путем использования в качестве балласта конденсатора или катушки индуктивности, создающих реактивное сопротивление. Наибольшей популярностью в настоящее время пользуются электромагнитные и электронные балласты.


Электромагнитный балласт

Балласты люминесцентных ламп - это пускорегулирующие устройства. Устройства данного типа представляют собой дроссель (индуктивное сопротивление) подключаемый последовательно с лампой. Чтобы запустить лампу с таким балластом, потребуется также стартер. Преимуществом такого подключения является его простота и дешевизна. Главный недостаток - мерцание ламп при удвоенной частоте сетевого напряжения. Из-за этого у людей, находящихся в помещении, повышается утомляемость глаз, что может негативно сказаться на их здоровье. Кроме того, лампы с электромагнитным балластом относительно долго запускаются (от одной до нескольких секунд, в зависимости от их срока службы), издают гул, и потребляют больше энергии, чем аналоги с электронным балластом.

Кроме вышеперечисленных недостатков, стоит также отметить эффект стробирования, возникающий из-за мерцания ламп. Его суть состоит в том, что при наблюдении за вращающимся или колеблющимся предметом, частота движения которого равна частоте мерцания люминесцентной лампы, этот предмет может казаться неподвижным. Подобный эффект может возникнуть, к примеру, при наблюдении за шпинделем токарного или сверлильного станка, мешалкой кухонного миксера, циркуляционной пилой и прочими движущимися приборами. Поэтому, во избежание травмирования, на производстве использование люминесцентных ламп для подсвечивания движущихся механизмов разрешается лишь при условии дополнительной установки ламп накаливания.

Электронный балласт

Этот тип балласта представлен электронной схемой, преобразующей сетевое напряжение в высокочастотный переменный ток, питающий лампу. Достоинством этого балласта является отсутствие мерцания и гула. Кроме того, по сравнению с электромагнитным аналогом, он имеет меньшую массу и размеры.

При использовании такого типа подключения можно добиться так называемого холодного старта - мгновенного запуск лампы. Однако из-за того, что этот режим неблагоприятно сказывается на сроке службы ламп, применяется горячий старт, предполагающий предварительный подогрев электродов. Стоит признать, что на подогрев уходит не более одной секунды, поэтому эта особенность подключения не несет каких-либо неудобств.


Запуск электромагнитного балласта

В классической схеме пуска лампы с электромагнитным балластом используется стартер (пускатель), который представляет собой миниатюрную газоразрядную неоновую лампочку с парой металлических электродов. Один из электродов жесткий и неподвижный, а другой - биметаллический, изгибающийся. Следовательно, в исходном состоянии электроды разомкнуты.

Стартер активируется параллельно с лампой. В момент включения, к электродам стартера и лампы поступает полное напряжение. Это связано с тем, что ток через лампу не идет, а падение напряжения на пускателе равно нулю.

Так как электроды лампы холодные, напряжения сети не хватает для ее зажигания. Благодаря возникновению разряда в пускателе через него и лампу проходит ток, которого достаточно для электродов пускателя, но недостаточно для разогрева лампы. В результате ток в общей цепи растет и разогревает электроды лампы. Когда это происходит, электроды пускателя охлаждаются и размыкаются. Благодаря мгновенному разрыву цепи возникает пик напряжения на дросселе, который и стимулирует зажигание лампы. Электроды тем временем уже достаточно разогреты.

Во время горения напряжение в лампе составляет примерно половину от сетевого, так же, как и в пускателе. Причина в том, что проходя через дроссель, оно падает, что позволяет устранить повторное срабатывание пускателя.

При зажигании, пускатель может срабатывать несколько раз. Это связано с отклонениями его характеристик от характеристик лампы. В некоторых случаях стартер начинает работать циклически. Если это происходит, то лампа постоянно гаснет и снова вспыхивает. При погасании можно созерцать свечение накаленных током катодов.

Запуск электронного балласта

При использовании электронного балласта, как правило, нет необходимости в отдельном специальном стартере, так как этот балласт способен самостоятельно сформировать нужные последовательности напряжений.

Запуск люминесцентной лампы электронным балластом может производиться по разным технологиям. В наиболее типичной из них пускорегулирующее устройство подогревает катоды лампы и подает на них напряжение, которого достаточно для зажигания. Как правило, это переменное и высокочастотное напряжение. Такое подключение позволяет устранить мерцание ламп, которое является весомым недостатком электромагнитных балластов.

В зависимости от конструктивных особенностей и временных параметров последовательности пуска лампы, такие пускорегулирующие устройства могут обеспечивать как мгновенное включение света, так и плавное, с постепенным нарастанием яркости.

Часто используются комбинированные методы пуска, когда лампа активируется не только за счет подогрева катодов, но и благодаря тому, что цепь, подпитывающая ее, выступает в качестве колебательного контура. Характеристики колебательного контура подбираются таким образом, чтобы в случае отсутствия разряда в лампе, в нем возникало явление электрического резонанса, которое ведет к значительному повышению напряжениям между катодами лампы. Обычно это приводит также к возрастанию тока подогрева катодов. Причина заключается в том, что при использовании такой схемы пуска спирали накала катодов часто соединяются последовательным образом через конденсатор, и выступают частью колебательного контура. В результате из-за подогрева катодов и высокого напряжения между ними лампа быстро и легко зажигается.


После зажигания параметры колебательного контура меняются, резонанс прекращается, а напряжение в контуре значительно снижается, сокращая тем самым ток накала катодов.

Существуют разные вариации данной технологии. К примеру, в предельных случаях, балласт может не подогревать катоды вовсе, а лишь приложить к ним напряжение, достаточно высокое для зажигания за счет пробоя газа расположенного между катодами. Аналогичная технология используется для пуска ламп с холодным катодом. Она пользуется популярностью среди радиолюбителей, благодаря возможности осуществить запуск даже с перегоревшими нитями накала катодов. Обычными методами их запустить нельзя, так как катоды в таком случае не нагреваются. В частности, радиолюбители используют этот способ для восстановления компактных энергосберегающих ламп, представляющих собой обычные люминесцентные лампы с электронным балластом, встроенным в небольшой корпус. После переделки балласта, такая лампа долго работает, несмотря на перегорание спиралей подогрева. Срок ее службы ограничивается разве что временем полного распыления электродов.

Причина поломок

Электроды люминесцентных ламп - это вольфрамовые нити, покрытые активной массой (пастой) из щелочноземельных металлов. Именно эта паста обеспечивает тлеющий разряд. Без нее вольфрамовые нити перегорали бы гораздо быстрее. В процессе работы лампы паста постепенно осыпается, выгорает и испаряется. Процесс ускоряется в случае частых пусков, когда разряд на протяжении короткого промежутка времени проходит не по всей площади электрода, а на малом участке его поверхности. Это приводит к перегреву электрода и возникновению потемнений на концах лампы, которые обычно свидетельствуют о ее скором выходе из строя.

Когда паста полностью выгорает, ток лампы падает, а напряжение - возрастает. В результате стартер начинает срабатывать постоянно, вызывая мигания, которые также свидетельствуют о том, что дни работы лампы сочтены. Электроды находятся в постоянном разогреве и, в конце концов, один из них перегорает. Происходит это через несколько дней после появления мерцания.


В последние минуты работы лампа горит без мерцаний. В этот момент разряд проходит через остатки электрода, на котором уже не осталось активной массы. Когда остатки вольфрама осыпаются или испаряются, разряд поступает на траверсы (крепления вольфрамовых нитей, выполненные из проволоки). После перегорания траверсов лампа вновь начинает мерцать. Если выключить ее и заново включить, она уже не будет светить.

Описанный выше механизм перегорания лампы справедлив для тех моделей, в которых используются электромагнитные балласты. В случае применения электронных балластов, все происходит несколько иначе. Так же, как и в предыдущем случае, все начинается с выгорания активной массы электродов, после которой следует их перегрев и перегорание одной из нитей. Отличие состоит в том, что сразу после перегорания, лампа гаснет без каких-либо мерцаний и миганий. Этим она обязана конструкции электронного балласта, которая предусматривает автоматическое отключение лампы в случае ее неисправности.

Люминофоры и спектр излучения

Многие пользователи считают, что свет люминесцентных ламп грубый и неприятный. Кроме того, цвет предметов, которые освещаются такими лампами, может искажаться. Виной тому синие и зеленые линии в спектре излучения разряда и тип применяемого люминофора.

В дешевых светильниках с люминесцентными лампами используют галофосфатный люминофор, излучающий главным образом желтый и синий свет, и в меньшей мере зеленый и красный свет. Глазу такая смесь цветов кажется белым светом, однако если свет отражается от предметов, его спектр меняется и возникает эффект искажения. Достоинством таких ламп является высокая световая отдача.

В более дорогих моделях применяет трех- или пятиполосный люминофор. Благодаря этому удается получить более равномерное распределение излучения по видимому спектру. Так свет воспроизводится более натурально. Недостатком этих ламп является не такая высокая светоотдача, как в предыдущем случае.

Существуют также специальные люминесцентные лампы, используемые в освещении помещений, в которых живут птицы. Их спектр содержит ближний ультрафиолет, позволяющий питомцам практически не чувствовать разницу между естественным и искусственным освещением. Необходимость применения таких технологий обусловлена тем, что в отличие от людей, птицы имеют четырехкомпонентное зрение.

Варианты исполнения

По стандарту, люминесцентные лампы подразделяют на колбные и компактные. Оба типа используются довольно широко.

Колбные лампы имеют в качестве оболочки стеклянную трубку. Они могут отличаться по типу и диметру цоколя. Такие лампы часто используются в крупных помещениях: магазины, офисы, цеха, склады и так далее.

Компактные люминесцентные лампы имеют оболочку в виде более тонкой (по сравнению с колбными) изогнутой трубки. Их различают по типу цоколя и размерам. Эти лампы производятся под стандартный патрон Е27 и Е14, поэтому их можно использовать вместо ламп накаливания в обычных светильниках. Их мощность, как правило, колеблется в пределах 16-36 Вт. Люминесцентная лампа такого типа имеет небольшие габариты и устойчивость к механическим воздействиям (умеренным, разумеется).


Кроме типа цоколя, на коробке из-под лампы указываются такие данные:

  1. Цвет излучения: Д - дневной, Б - белый, ХБ - холодно-белый и т. д.
  2. Мощность в ватах: 16W, 18W и т. д.
  3. Длина корпуса (если это колбный вариант люминесцентной лампы): 765, 450 и т. д. Подразумевается длина в миллиметрах.

Возвращаясь к типу цоколей, стоит отметить, что они бывают резьбовыми (например, Е27) и штырьковыми (например, G13). Люминесцентная лампа может иметь и другие типы цоколей, но они слабо распространены.

Все лампы такого типа содержат ртуть, которая, как известно, является ядовитым веществом. В разных моделях ламп ее доза может колебаться от 40 до 70 мг. Но даже небольшого количества ртути, находящегося в люминесцентной лампе на 18 Вт, достаточно, чтобы причинить вред здоровью. Ртуть представлена в виде пара, поэтому, если лампа разбилась, нужно сразу же проветрить помещение.

Когда срок службы ламп истекает, их обычно выбрасывают вместе с простым мусором, что совсем неправильно. Существуют фирмы, утилизирующие такие лампы, но к ним обращаются лишь крупные предприятия. Справедливости ради стоит отметить, что количество попадающей в воздух ртути из залежей на свалках не так велико, как количество этого вещества, выбрасываемое при выработке электроэнергии. А так как ЛЛ являются экономными, их использование даже положительно сказывается на экологическом состоянии планеты. Тем не менее утилизация люминесцентных ламп является открытой проблемой.

Постоянное подорожание электроэнергии привело к тому, что в результате прогресса появились энергосберегающие приборы .

А так как без освещения прожить практически невозможно, очень большое распространение получили лампы.

На упаковках мы можем найти словосочетание «срок службы» или «срок годности» , который измеряется в часах, но при переводе на дни он получается не очень большим.

Не многие понимают значение этих фраз и перед прилавком магазина возникает вопрос, что лучше купить . Давайте разбираться.

Общая информация

Поэтому постарайтесь выбрать качественный продукт ещё в магазине.

В заключении хочется отметить, что в магазинах все же очень много хороших люминесцентных ламп , которые будут пригодны для использования гораздо дольше заявленного срока производителя.

Главное, покупайте их в специализированных магазинах, тогда больше шансов не столкнуться с подделкой .

И еще. Срок годности обозначается не просто так на продукции. По его окончанию все же лучше заменить лампу на новую , а не дожидаться пока она сама выйдет из строя и заодно испортит всю электрику в доме.

Краткая информация (наведите курсор)

Люминесцентные лампы представляют из себя разновидность газоразрядных ламп. Общий принцип действия всех газоразрядных ламп основан на возникновении электрического разряда в газовой среде. В люминесцентных лампах в качестве газовой среды используются пары ртути, в которых электрический разряд создает ультрафиолетовое излучение. Чтобы преобразовать ультрафиолетовое излучение в видимый свет, колбу люминесцентной лампы изнутри покрывают слоем люминофора.

В отличие от своих предшественниц – ламп накаливания – газоразрядные люминесцентные лампы имеют существенно более высокую светоотдачу на единицу потребляемой мощности. Кроме того, из-за гораздо меньшего нагрева, по сравнению с лампами накаливания, они имеют намного более длительный срок службы (при грамотном применении и хорошем качестве изготовления) и могут применяться в гораздо более широких областях.

К недостаткам газоразрядных люминесцентных ламп можно отнести неравномерную спектральную характеристику излучаемого света, обусловленную составом используемого люминофора, приводящую к искажению воспринимаемых цветов. Также к недостаткам можно отнести наличие в спектре ультрафиолетовой составляющей исходного излучения. Кроме того, по принципу своей работы, газоразрядным лампам свойственно наличие пульсаций излучаемого светового потока.
Многие годы, до последнего времени, для подключения газоразрядных люминесцентных ламп используют электромагнитные пуско-регулирующие аппараты (ЭмПРА). Подключение люминесцентных ламп через ЭмПРА характеризуется повышенным коэффициентом пульсации на частоте 100 Гц (см. Рис.1).


Рис.1. Пульсации потолочной люминесцентной лампы ЛБ-40 с ЭмПРА (программа «ЭкоЛайт-АП»).

В последнее время активно внедряются электронные балласты (электронные пуско-регулирующие аппараты – ЭПРА). Качественные ЭПРА не только существенно снижают уровень пульсаций лампы (Рис. 2), но и существенно продлевают срок её службы за счет реализации более оптимальных режимов работы люминесцентной лампы (пуск, прогрев, контроль тока и т.д.). Однако в продаже достаточно часто встречаются дешёвые подделки под качественные ЭПРА, с повышенным уровнем пульсаций (см.Рис.3).


Рис.2. Пульсации люминесцентной лампы Camelion 20 ВТ с качественным ЭПРА. (программа «ЭкоЛайт-АП»).
Рис. 3. Пульсации люминесцентной лампы WalSun 9Вт с некачественным ЭПРА. (программа «ЭкоЛайт-АП»).

По приведенным скриншотам видно, что пульсации люминесцентных ламп могут достигать значительных величин. Напоминаем, что предельно допустимый уровень пульсаций освещенности при работе с компьютером составляет 5%.
Для определения пульсаций мы рекомендуем применять люксметры-пульсметры-яркомеры «Эколайт-01» (сюда>>> ) и «Эколайт-02» (сюда>>> ). Помимо измерения уровня освещенности, яркости и коэффициента пульсаций, Вы сможете использовать мощную, но бесплатную программу-анализатор пульсаций «ЭкоЛайт-АП» (см. рисунки) (сюда>>> ), работающую с фотоголовками ФГ-01 из состава приборов семейства «Эколайт».

Последнее время наблюдается повышение требований к освещению, как в отношении энергоэффективности, так и качества света. Одной из важных характеристик искусственного освещения является пульсация светового потока или, как часто говорят, мерцание света.


Пульсация светового потока на глаз практически не воспринимается, так как частота пульсации превышает критическую частоту слияния мельканий, но неблагоприятно влияет на человека, вызывая повышенную утомляемость. Отрицательное воздействие пульсации возрастает с ее увеличением, появляется напряжение на глазах, усталость, трудность сосредоточения на сложной работе, головная боль.

Сравнение светодиодного светильника Shine и лампы другого производителя.

Освещение пульсирующим светом может быть даже опасно для жизни при наличии в поле зрения движущихся и вращающихся объектов из-за возникновения стробоскопического эффекта. При наблюдении предмета, вращающегося или колеблющегося с частотой равной или кратной частоте мерцания источника света, он будет казаться неподвижным.Например, этот эффект может затронуть шпиндель токарного или фрезерного станка, циркулярную пилу, мешалку кухонного миксера, блок ножей вибрационной электробритвы.

Пульсация света характеризуется коэффициентом пульсации (KП, %).

Он показывает насколько колеблется освещенность в результате изменения во времени светового потока источника света при питании его переменным током и выражается формулой:

где Емакс и Емин - максимальное и минимальное значения освещенности за период ее колебания, лк; Еср - среднее значение освещенности за этот же период, лк. Исследования показывают, что опасность возникновения стробоскопического эффекта существует даже при KП = 10%. Российские нормы регламентируют значение KП в диапазоне от 5 до 20% в зависимости от точности зрительной работы.Согласно действующим гигиеническим нормам уровень пульсаций светового потока должен быть:


− в помещениях, оборудованных компьютерами - не более 5% (СанПиН 2.2.2/2.4.1340-03);
− в детских дошкольных учреждениях - 10% (СанПиН 2.2.1/2.1.1.1278-03);
− в учреждениях общего образования, начального, среднего и высшего специального образования - 10% (СанПиН 2.2.1/2.1.1.1278-03).


Несмотря на то, что эти нормы были введены 10 лет назад, только в последнее время начался активный контроль их соблюдения. В одночасье практически все рабочие места большинства предприятий, учреждений и учебные аудитории перестали соответствовать санитарным нормам, т.е. стали вредными по причине некачественного искусственного освещения.

Светодиодная панель Shine в сравнении со ртутным люминесцентным светильником.

Как известно, в подавляющем большинстве российских офисов для освещения используются ртутные люминесцентные лампы с электромагнитным балластом (ЭмПРА), вызывающим пульсацию светового потока ламп более 25%.Существует мнение, что проблему пульсаций люминесцентных ламп можно решить заменой электромагнитного (ЭмПРА) балласта на электронный (ЭПРА). Но на деле оказывается, что далеко не все электронные балласты обеспечивают пульсации в пределах требуемых по закону 5%, а лишь снижают ее до уровня 15-20%.

Самый верный способ сделать искусственный свет более безопасным и соответствующим «букве закона» - это заменить светильники с газоразрядными лампами на современные светодиодные светильники. Но и здесь необходимо внимательно отнестись к выбору производителя. Некоторые светодиодные светильники дают большую пульсацию света, чем светильники с люминесцентными лампами и ЭмПРА.

Секрет отсутствия вредных для человека пульсаций светодиодного света заключается в преобразователе тока (или драйвере) - микросхеме, которая есть в каждом светодиодном светильнике или лампе. Именно от характеристик светодиодного драйвера зависит насколько качественным током «питаются» светодиоды и, как результат, насколько качественный свет они излучают.

В светодиодных источниках света Shine® давно и широко применяются высокочастотные драйверы, позволяющие добиться уровня пульсаций в пределах 2%. Это особенно важно для освещения рабочих мест, образовательных и медицинских учреждений, особенно детских.

Сравнение ламп типа MR16 Shine и другого производителя.

С другой стороны, важность соблюдения норм пульсации света не следует переоценивать. При кратковременном воздействии пульсация не опасна, даже если коэффициент пульсации достигает значений более 20%. Поэтому строгие требования к коэффициенту пульсации не предъявляются в отношении бытового освещения, где в среднем искусственное освещение используется не более 3-х часов в сутки. В этом случае для потребителя более важной является интенсивность освещения, а также цена источника света. Зачем переплачивать за качественные характеристики, оценить достоинства которых не получится? Зачастую важнее, чтобы переход на энергоэффективное освещение не пробил дыру в семейном бюджете. С помощью источников света Shine® можно решить и эту задачу. Выгодное соотношение характеристик и цены Вы найдете в линейке экономичных светодиодных ламп Shine®.


Часто приходится слышать, что новые технологии в освещении, призванные улучшить жизнь человека, на самом деле во многом ее усложняют. На самом деле это не так. Просто потребность человека в свете со временем постоянно растет, соответственно, тот искусственный свет, которого было достаточно ранее, сейчас уже не удовлетворяет в полной мере запросам потребителей. Мы в Shine® идем в ногу со временем и не предлагаем безальтернативных решений. Наша задача сделать Ваш выбор проще. А в том, что он будет после этого правильным, мы не сомневаемся.