Устройство лампы накаливания ее преимущества и недостатки. Проект по физике на тему Энергосберегающие лампы — альтернатива лампам накаливания

Вряд ли, в настоящее время найдётся человек, который никогда не использовал или, по крайней мере, не слышал об энергосберегающих лампах, довольно интенсивно вытесняющие старые, «добрые» лампы накаливания.

Информация о них на сегодняшний день противоречивостью особенно не отличается: в большинстве своём, это положительные отзывы, статьи, что, в общем-то, и понятно, исходя из самого их названия – «энергосберегающие лампы». Тем не менее, как и всякие изделия, устройства, энергосберегающие лампы имеют свои преимущества и недостатки.

Рассмотрим преимущества и недостатки энергосберегающих ламп, сравнивая их с привычными нам лампами накаливания. Итак, преимущества и недостатки энергосберегающих ламп :

Преимущества .

Светоотдача . Неоспоримым и, пожалуй, главным преимуществом энергосберегающих ламп является их высокая светоотдача (она превосходит светоотдачу ламп накаливания в 5 раз), что, в общем-то, видно из их названия. Таким образом, энергосберегающая лампа мощностью, скажем, 20 Вт способна создать световой поток равный световому потоку лампы накаливания 100 Вт, стало быть, такая светоотдача дает не просто экономию электроэнергии, а урезает её расход в разы!

Нельзя не отметить ещё одно достоинство энергосберегающих ламп, вытекающее из их экономичности потребления электроэнергии – значительное снижение нагрузки на группы освещения вашей электропроводки, т. е, более щадящий режим её работы.

Срок службы . Довольно, немаловажное преимущество энергосберегающих ламп. Опять-же, сравнивая их с лампами накаливания, можно сказать, что последние имеют меньший срок службы, относительно энергосберегающих примерно в 5-15 раз.

Низкая теплоотдача . Несмотря на довольно высокий уровень светоотдачи, энергосберегающие лампы отличаются незначительным тепловыделением, что существенно расширяет область их применения и является весомым преимуществом в плане пожаробезопасности.

Распределение света . Свет энергосберегающих ламп намного мягче, равномернее распределяется в помещении, отсутствуют резкие тени на стенах, как при использовании ламп накаливания. Связано это с тем, что излучение света, в отличие от последней, идет не от накалённой спирали, а по всей площади колбы.

Возможность выбора цвета освещения . Можно выбрать нужный вам оттенок освещения исходя из особенностей интерьера квартиры (дома) или особенностей вашего зрения: 2700 К – теплый белый свет; 4200 К – дневной свет; 6400 К – холодный белый свет.

Недостатки .

Высокая стоимость . Опять-же, в сравнении с лампами накаливания. Даже сравнительно недорогая энергосберегающая лампа на сегодняшний день по стоимости превышает обычную лампу.

Длительность разогрева . Если лампы накаливания развивают максимальную интенсивность излучения света мгновенно, при их включении, то энергосберегающие лампы такой скоростью разогрева, как и многие люминесцентные лампы не обладают. Этот процесс у некоторых ламп может длится до 1,5 - 2 минут.

Ограниченный температурный диапазон . Большинство энергосберегающих ламп не предназначены для эксплуатации их при температуре ниже -15°С.

Жёсткие требования к напряжению в сети . В случае снижения питающего напряжения энергосберегающих ламп более чем на 10% они попросту не зажигаются. Т. е, «в полнакала», как обычные лампы накаливания в «просаженной» сети эти лампы работать не будут. Весьма важный фактор, т. к, далеко не все электрические сети у нас имеют стандартные показатели качества электроэнергии (зачастую, это сельские сети, сети дачных массивов).

По этой же причине возникают затруднения в использовании светильников и люстр с энергосберегающими лампами с диммерами (светорегуляторами).

И в заключение: понятно, что у всех нас разные требования к лампам, индивидуальные особенности помещений, а достоинства и недостатки энергосберегающих ламп ранжированы в этом списке, исходя из соображений значимости, важности с точки зрения автора статьи. Поэтому, каждый читатель сам определит для себя важность тех или иных плюсов и минусов энергосберегающих ламп.

Помимо вышеперечисленных преимуществ и недостатков существуют, конечно, и другие, менее значимые. Однако, руководствуясь приведённым списком всегда можно сделать

Содержание.

    Введение

    Актуальность

Глава 1. Лампа накаливания

    Из истории лампы накаливания

    Строение ламп накаливания

    Преимущества и недостатки ламп накаливания

Глава 2. Энергосберегающие лампы

1.Из истории люминесцентной лампы

2.Строение энергосберегающих ламп

3.Техническо-сравнительная характеристика энергосберегающих

ламп и ламп накаливания.

Глава 4.

3. Экологическая безопасность

Выводы

    Заключение

    Список литературы

    Приложения

Введение.

Известно ли Вам, что 40% потребляемой в России энергии можно "получить" за счет простой экономии? Или, если сформулировать это по-другому, у нас ежегодно тратится впустую почти половина всей производимой энергии? Печально, но факт: наша страна - одна из самых энергорасточительных в мире. Количество теряемой энергии сравнимо с объемом всей экспортируемой из России нефти и нефтепродуктов.

В больших городах у нас ежедневно забывают или ленятся гасить сотни тысяч осветительных приборов. И за день набегают уже не килограммы, а десятки тонн выброшенного топлива.

Европейцы стараются снизить энергозатраты всеми возможными способами. Мы же не считаем нужным так мелочиться. Почему? Может, мы богаче европейцев? Скорее всего, дело просто в отсутствии элементарной хозяйственности. Мало кто задумывается, что сто 75-ваттных лампочек, работающих вхолостую, за час "съедают" несколько килограммов угля или нефти, попутно загрязняя природную среду вредными веществами. Между тем, простая замена привычных источников света на их энергосберегающих родственников сократит расходы энергоресурсов в 4-5 раз! Экономное использование электроэнергии позволит сократить объемы использования этих энергетических ресурсов, а, значит, и снизить выбросы вредных веществ в атмосферу, сохранить чистоту водоемов. Кроме того, увеличение эффективности использования электроэнергии - это и реальный способ снизить затраты на оплату счетов за электричество. Ведь стоимость электроэнергии напрямую связана со стоимостью топлива, запасы которого ограничены и цены на которое постоянно растут.

Актуальность проблемы : Президент РФ подписал федеральный закон "Об энергосбережении и повышении энергетической эффективности", принятый Государственной думой 11 ноября 2009г. и одобренный Советом Федерации 18 ноября 2009г. В связи с этим в средствах массовой информации очень часто поднимается вопрос о переходе населения страны на энергосберегающие лампы. В этой работе мы постарались рассмотреть главные «плюсы» и «минусы» ламп накаливания и энергосберегающих ламп.

Гипотеза : если знать все плюсы и минусы каждого вида ламп, то потребителю представится возможность сделать правильный выбор при приобретении электролампы.

Цель работы : изучить и сравнить характеристики каждого вида ламп и обеспечение рационального использования электроэнергии за счет замены ламп накаливания на энергосберегающие лампы.

Задачи:

    Изучить строение энергосберегающих ламп и строение ламп накаливания.

    Изучить характеристики энергосберегающих и ламп накаливания

    Выявить преимущества и недостатки ламп накаливания

    Выявить преимущества и недостатки энергосберегающих ламп.

    Провести сравнительный анализ энергосберегающих ламп и ламп накаливания.

    Провести опрос об использовании энергосберегающих ламп в быту.

    Провести эксперимент по подсчету затраченной электроэнергии, при работе каждого вида ламп.

    Сравнить потребление электроэнергии трех энергосберегающих ламп по 15Вт (75Вт) разных фирм производителя и лампы накаливания.

    Сформулировать советы при покупке и эксплуатации энергосберегающих ламп в быту.

Область исследования – энергосбережение.

Предмет исследования – энергосберегающие лампы и лампы накаливания.

Методы исследования :

Изучение теоретической и специальной литературы;

Экспериментальные методы расчета и сравнения потребления электроэнергии при работе энергосберегающих ламп и лампы накаливания по счетчику энергии;

Анкетирование об использовании энергосберегающих ламп в быту;

Анализ полученных результатов.

Исследование было проведено по следующим этапам:

Организационный: планирование, выбор темы, сбор и обработка информации;

Практический: экспериментальная работа с лампами, разработка презентации, фотоматериалы.

Контрольный: заключение подведение итогов.

План работы:

Изучение литературных и электронных источников по исследуемой проблеме.

Эксперименты по расчету потребления электроэнергии.

Обработка данных и анализ полученных результатов.

Оформление работы в текстовом документе, в виде презентации

Практическая значимость работы.

Изучив характеристики и строение энергосберегающих ламп, мы планируем выяснить возможно ли снизить затраты на электроэнергию при замене ламп накаливания на энергосберегающие лампы и сформулировать рекомендации при покупке энергосберегающих ламп и их эксплуатации в быту.

Глава 1. Лампа накаливания

Лампа накаливания - источник света, преобразующий энергию проходящего по спирали лампы электрического тока в тепловую и световую. Под вечер, когда сгущаются сумерки, мы привычно щелкаем выключателем, и под потолком загорается "маленькое солнце" – электрическая лампочка. И редко кто вспоминает при этом об изобретателе простого, надежного и удобного источника света.

В 1809 году англичанин Деларю строит первую лампу накаливания (с платиновой спиралью).

В 1838 году бельгиец Жобар изобретает угольную лампу накаливания.

В 1854 году немец Генрих Гёбель разработал первую «современную» лампу: обугленную бамбуковую нить в вакуумированномсосуде. В последующие 5 лет он разработал то, что многие называют первой практичной лампой.

В 1860 год английский химик и физик Джозеф Уилсон Суон продемонстрировал первые результаты и получил патент, однако трудности в получении вакуума привели к тому, что лампа Суона работала недолго и неэффективно.

11 июля 1874 года российский инженер Александр Николаевич Лодыгин получил патент за №1619 на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумированный сосуд

В 1875 году В. Ф. Дидрихсон усовершенствовал лампу Лодыгина, осуществив откачку воздуха из неё и применив в лампе несколько волосков (в случае перегорания одного из них, следующий включался автоматически).

Английский изобретатель Джозеф Уилсон Суон получил в 1878 году британский патент на лампу с угольным волокном. В его лампах волокно находилось в разреженной кислородной атмосфере, что позволяло получать очень яркий свет.

Во второй половине 1870-х годов американский изобретатель Томас Эдисон проводит исследовательскую работу, в которой он пробует в качестве нити различные металлы. В 1879 году он патентует лампу с платиновой нитью. В 1880 году он возвращается к угольному волокну и создаёт лампу с временем жизни 40 часов. Одновременно Эдисон изобрёл бытовой поворотный выключатель. Несмотря на столь непродолжительное время жизни его лампы вытесняют использовавшееся до тех пор газовое освещение.

В 1890-х годах А.Н. Лодыгин изобретает несколько типов ламп с нитями накаливания из тугоплавких металлов.

Строение ламп накаливания Лодыгин предложил применять в лампах нити из вольфрама и молибдена и закручивать их в форме спирали. Он предпринял первые попытки откачивать из лампы воздух, что сохранило нить от окисления и увеличило срок службы во много раз. Первая американская коммерческая лампа с вольфрамовой спиралью впоследствии производилась по патенту Лодыгина. Также им были изготовлены газонаполненные лампы (с угольной нитью и заполненные азотом).

В конце 1980-х годов появились лампы с нитью накаливания из окиси магния, тория, циркония и иттрия (лампа Нернста) или нить из металлического осмия (лампа Ауэра) и тантала (лампа Больтона и Фейерлейна).

В 1904году венгры Д-р Шандор Юст и Франьо Ханаман получили патент за №34541 на использовании в лампах вольфрамовой нити. В Венгрии же были произведены первые такие лампы, вышедшие на рынок через венгерскую фирму Tungsram в 1905 году.

В 1906г Лодыгин продает патент на вольфрамовую нить компании General Electric . В том же 1906году в США он построил и пустил в ход завод по электрохимическому получению вольфрама, хрома, титана. Из-за высокой стоимости вольфрама патент находит только ограниченное применение.

В 1910 году Вильям Дэвид Кулидж изобретает улучшенный метод производства вольфрамовой нити. Впоследствии вольфрамовая нить вытесняет все другие виды нитей.

Оставшаяся проблема с быстрым испарением нити в вакууме была решена американским учёным, известным специалистом в области вакуумной техники Ирвингом Ленгмбром, который, работая с 1909 года в фирме « General Electric », ввёл в производство наполнение колбы ламп инертными, точнее- тяжёлыми благородными газами (в частности- аргоном), что существенно увеличило время их работы и повысило светоотдачу.

    2.Строение ламп накаливания

На схеме:

1 - колба;

2 - полость колбы (вакуумированная или наполненная газом);

3 - тело накала;

4, 5 - электроды (токовые вводы);

6 - крючки-держатели тела накала;

7 - ножка лампы;

8 - внешнее звено токоввода, предохранитель;

9 - корпус цоколя;

10 - изолятор цоколя (стекло);

11 - контакт донышка цоколя

В лампе накаливания используется эффект нагревания проводника (тела накаливания) при протекании через него электрического тока (тепловое действие тока). Температура тела накала резко возрастает после включения тока.

Часть потребляемой электрической энергии лампа накаливания преобразует в излучение, часть уходит в результате процессов теплопроводности и конвекции. Только малая доля излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение. Для повышения КПД лампы и получения максимально «белого» света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити - температурой плавления. Идеальная температура в 5770 К недостижима, т. к. при такой температуре любой известный материал плавится, разрушается и перестаёт проводить электрический ток. В современных лампах накаливания применяют материалы с максимальными температурами плавления - вольфрам (3410 °C) и, очень редко, осмий (3045 °C).

При практически достижимых температурах 2300-2900 °C излучается далеко не белый и не дневной свет. По этой причине лампы накаливания испускают свет, который кажется более «жёлто-красным», чем дневной свет.

В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид. По этой причине тело накала помещено в колбу, из которой в процессе изготовления лампы откачивается воздух. Первые лампы изготавливали вакуумными; в настоящее время только лампы малой мощности (для ламп общего назначения - до 25 Вт) изготавливают в вакуумированной колбе. Колбы более мощных ламп наполняют инертным газом (азотом, аргоном или криптоном). Повышенное давление в колбе газополных ламп резко уменьшает скорость испарения вольфрама, благодаря чему не только увеличивается срок службы лампы, но и есть возможность повысить температуру тела накаливания, что позволяет повысить КПД и приблизить спектр излучения к белому. Колба газонаполненной лампы не так быстро темнеет за счёт осаждения материала тела накала, как у вакуумной лампы.

Конструкции ламп накаливания весьма разнообразны и зависят от назначения. Однако общими являются тело накала, колба и токовводы. В зависимости от особенностей конкретного типа лампы могут применяться держатели тела накала различной конструкции; лампы могут изготавливаться бесцокольными или с цоколями различных типов, иметь дополнительную внешнюю колбу и иные дополнительные конструктивные элементы.

В конструкции ламп общего назначения предусматривается предохранитель - звено из ферроникелевого сплава, вваренное в разрыв одного из токовводов и расположенное вне колбы лампы - как правило, в ножке. Назначение предохранителя - предотвратить разрушение колбы при обрыве нити накала в процессе работы. Дело в том, что при этом в зоне разрыва возникает электрическая дуга, которая расплавляет остатки нити, капли расплавленного металла могут разрушить стекло колбы и послужить причиной пожара. Предохранитель рассчитан таким образом, чтобы при зажигании дуги он разрушался под воздействием тока дуги, существенно превышающего номинальный ток лампы.

Формы тел накала (нити накала) весьма разнообразны и зависят от функционального назначения ламп. Наиболее распространённым является из проволоки круглого поперечного сечения, однако находят применение и ленточные тела накала (из металлических ленточек). Поэтому использование выражения «нить накала» нежелательно - более правильным является термин «тело накала», включенный в состав Международного светотехнического словаря.

Тело накала первых ламп изготавливалось из угля (температура возгонки 3559 °C). В современных лампах применяются почти исключительно спирали из вольфрама, иногда осмиево - вольфрамового сплава.

Лампы изготавливают для различных рабочих напряжений. Сила тока определяется по закону Ома (I=U/R) и мощность по формуле P=U·I , или P=U²/R. Так как металлы имеют малое удельное сопротивление, для достижения такого сопротивления необходим длинный и тонкий провод. Толщина провода в обычных лампах составляет 40-50 микрон. Так как при включении нить накала находится при комнатной температуре, её сопротивление на порядок меньше рабочего сопротивления. Поэтому при включении протекает очень большой ток (в десять - четырнадцать раз больше рабочего тока). По этой причине часто лампы накаливания перегорают именно в момент включения. Но по мере нагревания нити её сопротивление увеличивается и ток уменьшается.

1. 3. Преимущества и недостатки ламп накаливания

Преимущества:

Налаженность в массовом производстве;

Малая стоимость;

Небольшие размеры;

Отсутствие пускорегулирующей аппаратуры;

Нечувствительность к ионизирующей радиации;

Чисто активное электрическое сопротивление (единичный коэффициент мощности);

Быстрый выход на рабочий режим;

Невысокая чувствительность к сбоям в питании и скачкам напряжения

Отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации;

Возможность работы на любом роде тока;

Нечувствительность к полярности напряжения;

Возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт);

Отсутствие мерцания и гудения при работе на переменном токе;

Непрерывный спектр излучения;

Приятный и привычный в быту спектр;

Устойчивость к электромагнитному импульсу;

Возможность использования регуляторов яркости;

Не боятся низкой и повышенной температуры окружающей среды, устойчивы к конденсату.

Недостатки:

Низкая световая отдача;

Относительно малый срок службы;

Хрупкость, чувствительность к удару и вибрации;

Бросок тока при включении (примерно десятикратный);

При термоударе или разрыве нити под напряжением возможен взрыв баллона;

Резкая зависимость световой отдачи и срока службы от напряжения лампы накаливания представляют пожарную опасность. Через 30 минут после включения ламп накаливания температура наружной поверхности достигает в зависимости от мощности следующих величин: 25 Вт-100 °C, 40 Вт - 145 °C, 75 Вт - 250 °C, 100 Вт - 290 °C, 200 Вт - 330 °C. При соприкосновении ламп с текстильными материалами их колба нагревается ещё сильнее. Солома, касающаяся поверхности лампы мощностью 60 Вт, вспыхивает примерно через 67 минут.

Нагрев частей лампы требует термостойкой арматуры светильников;

Световой коэффициент полезного действия ламп накаливания, определяемый как отношение мощности лучей видимого спектра к мощности, потребляемой от электрической сети, весьма мал и не превышает 4%.

Включение электролампы через диод, что часто применяется с целью продления ресурса на лестничных площадках, в тамбурах и прочих затрудняющих замену местах, ещё больше усугубляет её недостатки.

Глава 2. Энергосберегающие лампы

    1. Из истории люминесцентной лампы

Официально первая люминесцентная или, как ее еще называют, флуоресцентная лампа была создана в начале прошлого века инженером-изобретателем из США Питером Купером Хьюиттом, получившим на нее патент 17 сентября 1901 года. Хотя некоторые исследователи оспаривают его первенство в изобретении, называя «отцом» люминесцентной лампы малоизвестного немецкого физика Мартина Аронса, экспериментировавшего с ртутными лампами в конце XIX века.

Изобретенная и запатентованная Хьюиттом люминесцентная лампа содержала ртуть, пары которой нагревались проведенным через нее электротоком. Лампа Хьюитта была шарообразной формы и слегка изогнута, она давала больше света, чем лампы Лодыгина-Эдисона, но свет этот был голубовато-зеленым, неприятным для глаза. По этой причине первые ртутные лампы использовали только фотографы и они не получили широкого распространения.

Люминесцентная лампа в ее практически современном виде была создана группой

немецких изобретателей во главе с Эдмундом Гермером, запатентовавшими свое изобретение 10 декабря 1926 года. Именно Гермеру пришла идея нанести флуоресцирующее покрытие на стеклянную поверхность лампы изнутри, которое преобразовывало ультрафиолетовое свечение ртутной лампы в белый свет, не режущий глаз. Альберт Халл, инженер компании «General Electric», разработал люминесцентную лампу с аналогичным покрытием к началу 1927 года, но компания была вынуждена приобрести патент Эдмунда Гермера, как оформившего его раньше.

Эдвард Хаммер со своим изобретением - лампой с компактной спиралевидной колбой

С момента приобретения патента Гермера инженеры «General Electric» активно принялись за совершенствование люминесцентных ламп, стараясь довести их до серийного производства. Для сокращения размеров колбы были созданы лампы круглой и U-образной формы, продемонстрированные на стенде «GE» на всемирной нью-йоркской выставке 1939 года, лампы с компактной спиралевидной колбой разработаны инженером «General Electric» Эдвардом Хаммером в 1976 году. Впрочем, спиралевидные люминесцентные лампы в 80-х так и не были запущены в производство, поскольку руководители компании сочли расходы на строительство новых заводов чрезмерными. В 1995-м медлительностью «General Electric» воспользовались китайские производители, наладив выпуск энергосберегающих ламп со спиралевидными колбами.

Ввинчивающаяся лампа с магнитным балластом (SL) была создана компанией «Philips» в 1980 году - она стала первой люминесцентной лампой такого рода, способной конкурировать с лампами накаливания. Энергосберегающую лампу с электронным балластом (CFL) в 1985 году впервые продемонстрировал немецкий концерн «Osram».



Энергосберегающая лампа состоит из трех основных компонентов: цоколя, люминесцентной лампы и электронного блока.

Колба имеет изогнутую форму. .На внутреннюю поверхность колбы нанесено специальное вещество, называемое люминофор .Изнутри колба наполняется инертным газом и парами ртути в небольшом количестве. Также внутри колбы находятся вольфрамовые электроды, которые покрываются различными химическими смесями.

Электронный балласт, который находится между цоколем и колбой, является тем элементом, который заставляет работать люминофорное покрытие и пары ртути. Он потребляет высокочастотный ток, предотвращает мерцание, повышает выработку света. В электронный балласт встроен инвертор, который служит для повышения высокочастотного тока. Кроме этого, балласт выполняет следующие функции:

Подогревает электроды;

Подает номинальное напряжение (если будет использоваться , то эту работу он возьмет на себя, соответственно, повысится срок службы балласта).

Балласт является основным элементом во всей конструкции, чем качественнее он будет сделан, тем дольше проработает лампа.

Цоколь предназначен для вкручивания в патрон, включает в себя контакты, служащие для питания лампы. Цоколь (как и у обычной лампочки) предназначен для подключения лампы к сети. Для разных видов цоколя используют следующие обозначения: Е14 - "миньон"; Е27 - "стандартный"; Е40 - "для промышленных светильников" и т.д


Как только на лампу подается напряжение, между электродами образуется разряд. Он проходит через инертный газ, смешанный с парами ртути, создавая движение быстрых электронов. Те, в свою очередь, сталкиваются с атомами ртути. В этом момент и образуется свечение. Есть одно «но», во время столкновения электронов с атомами ртути образуется ультрафиолетовый свет. Он не воспринимается человеческим глазом. Для этого и необходимо нанесение люминофора, которое начинает светиться под действием ультрафиолета.

В зависимости от химического состава люминофора определяется цвет освещения.

2700К- теплый (желтый) цвет;
- 4000К - нейтральный (дневной) цвет;
- 6500К - холодный (белый) цвет.

«Теплый белый» свет соответствует цвету обычной лампы накаливания(желтоватый). Лампы такой цветовой температуры лучше всего подходят для использования дома.

«Холодный белый» свет не имеет тональной окраски. Такие лампы наиболее подходят для освещения офисов и торговых помещений.

Лампы цветовой температуры «дневной белый» дают свет голубоватого оттенка. Эти лампы чаще всего используют для освещения складских и производственных помещений, подъездов жилых домов и для наружного освещения.

Поэтому перед выбором лампы определитесь, какой цвет света вам больше подходит. В быту чаще используется теплый и нейтральный цвета. Если сравнивать их с обычной лампой накаливания, то они будут примерно соответствовать прозрачной и матовой лампочкам. Для освещения административных зданий, гаражей, складов, уличного освещения чаще используют холодный цвет.

Виды ламп. Существует два основных вида энергосберегающих ламп: U-образные и SS-спирали. Светят эти лампы достаточно ярко, потребляют энергии мало, поэтому получили широкое распространение в быту. Спиральные лампы стоят несколько дороже U-образных, поскольку процесс их изготовления более сложный, но при этом, они меньше по размерам. Кроме этого существуют такие лампы как «Свечи», «Глобусы», «Шары» и т. д. Это обычные энергосберегающие лампы, покрытые сверху матовой колбой. При этом надо помнить, что световой поток (яркость) этих ламп уменьшается за счет защитной колбы. Форма лампы не влияет на ее работу. Форма никак не сказывается на работе лампы, однако спиралевидные лампы в большинстве случаев стоят дороже, так как они более сложны в производстве.



Температура нагрева. Энергосберегающие лампы выделяют значительно меньше тепла, чем лампы накаливания. Значит, Вы можете себе позволить светильник с ограниченным уровнем температуры и даже с очень нежным абажуром.

Мощность. Энергосберегающие лампы бывают разной мощности от 5 до 100 Вт. и больше. Учитывая то, что световая отдача энергосберегающих ламп значительно выше, чем у обычных ламп примерно в 5 раз, выбирать надо исходя из пропорции. Например, там, где использовалась обычная лампочка 100 Вт, ставьте энергосберегающую лампу 20Вт. Напряжение питания, которое необходимо для стабильной работы лампы составляет от 198 до 240 В.

3.Преимущества и недостатки энергосберегающих ламп

Преимущества энергосберегающих ламп.

Дают большую отдачу света при меньшем потреблении энергии особенно, в зимнее время, когда лампа реже выключается.
- Значительный срок службы лампы - от 6 до 15 тысяч часов работы, что в 20 раз больше, чем у обычной лампы накаливания.
-Имеется возможность выбора типа свечения (теплый, холодный или нейтральный).
-Незначительное нагревание лампы, благодаря чему остается неповрежденной пластмассовая часть патрона светильника и его провод.
-Равномерное свечение лампы, которое обеспечивается встроенным, почти у всех производителей, конденсатором, поддерживающим постоянную частоту и интенсивность разрядов в лампе (до 50 тысяч раз/сек при 50 кГц). Т.е. риск мерцания энергосберегающих ламп существенно снижен.

Экономия электроэнергии. Коэффициент полезного действия у энергосберегающей лампы очень высокий и световая отдача примерно в 5 раз больше чем у традиционной лампочки накаливания.

Недостатки энергосберегающих ламп

Имеют большую чувствительность к скачкам напряжения в сети и из-за этого могут быстро перегореть.
- В излучении лампы отсутствует часть спектра, что может вызывать искажение цветового восприятия и как следствие - усталость глаз, особенно, при длительном чтении. Поэтому нежелательно использование энергосберегающей лампы в настольных светильниках.
-Ттребует некоторого времени для полного разогрева (до 2-х минут). при истощении ресурса лампы (при частом включении) возможно мерцание лампы.

Вред от энергосберегающих ламп тоже имеется. Это ультрафиолетовое излучение (расстояние от лампы до человека должно быть не менее 30 см). Вот почему в жилых помещениях не желательно использовать энергосберегающие лампы мощностью более 22 Вт.
-Чувствительность к температуре. Если минус 15-20 градусов – лампа не работает, при повышенной температуре воздуха теряется интенсивность освещения.
- Возможный вред энергосберегающих ламп заключается в том, что они, оказываются, содержат ртуть и фосфор, которые, хоть и в очень малых количествах, присутствуют внутри энергосберегающих ламп. Это не имеет никакого значения при работе лампы, но может оказаться опасным, если ее разбить. По той же причине энергосберегающие лампы можно отнести к экологически вредным, и поэтому они требуют специальной утилизации (их нельзя выбрасывать в мусоропровод и уличные мусорные контейнеры).

Высокая цена, которая окупается только в режиме стабильного включенного состояния лампы, что в бытовых условиях обычно мало выполнимо.

Срок службы энергосберегающих ламп ощутимо зависит от режима эксплуатации, в частности, они не любят частого включения и выключения.

Конструкция энергосберегающих ламп не позволяет использовать их в светильниках, где есть регуляторы уровня освещенности. При снижении напряжения в сети более чем на 10% энергосберегающие лампы просто не зажигаются.

Глава 3. Сравнительный анализ использования энергосберегающих ламп и ламп накаливания?

  1. В чем принципиальное отличие энергосберегающей лампы от лампы накаливания?

С устройством лампы накаливания знакомы многие. Под действием электрического тока вольфрамовая нить в лампочке раскаляется до яркого свечения. Но не все знают, как устроена энергосберегающая лампа.

Энергосберегающие лампы состоят из колбы, наполненной порами ртути и аргоном, и пускорегулирующего устройства (стартера). На внутреннюю поверхность колбы нанесено специальное вещество, называемое люминофор. Люминофор, это такое вещество, при воздействии на которое ультрафиолетовым излучением, начинает излучать видимый свет. Когда мы включаем энергосберегающую лампочку, под действием электромагнитного излучения, поры ртути, содержащиеся в лампе, начинают создавать ультрафиолетовое излучение, а ультрафиолетовое излучение, в свою очередь, проходя через люминофор, нанесенный на поверхность лампы, преобразуется в видимый свет.

Люминофор может иметь различные оттенки, и как результат, может создавать разные цвета светового потока. Конструкции существующих энергосберегающих ламп делают под существующие стандартные размеры традиционных ламп накаливания. Диаметр цоколя у таких ламп составляет 14 или 27 мм. Благодаря чему вы можете использовать энергосберегающие лампы в любом светильнике, бра или люстре, для которых вы раньше применяли лампу накаливания.

  1. В чем преимущества и недостатки энергосберегающих ламп, по сравнению с традиционными лампами накаливания?

Экономия электроэнергии. Коэффициент полезного действия у энергосберегающей лампы очень высокий и световая отдача примерно в 5 раз больше, чем у традиционной лампочки накаливания. Например, энергосберегающая лампочка мощностью 20 Вт создает световой поток равный световому потоку обычной лампы накаливания 100 Вт. Благодаря такому соотношению энергосберегающие лампы позволяют экономить экономию на 80% при этом без потерь освещенности комнаты привычного для вас. Причем, в процессе долгой эксплуатации от обычной лампочки накаливания световой поток со временем уменьшается из-за выгорания вольфрамовой нити накаливания, и она хуже освещает комнату, а у энергосберегающих ламп такого недостатка нет.

Долгий срок службы. По сравнению с традиционными лампами накаливания, энергосберегающие лампы служат в несколько раз дольше. Обычные лампочки накаливания выходят из строя по причине перегорания вольфрамовой нити. Энергосберегающие лампы, имея другую конструкцию и принципиально иной принцип работы, служат гораздо дольше ламп накаливания в среднем в 5-15 раз. Это примерно от 5 до 12 тысяч часов работы лампы (обычно ресурс работы лампы определяется производителем и указывается на упаковке). Благодаря тому, что энергосберегающие лампы служат долго и не требуют частой замены, их очень удобно применять в тех местах, где затруднен процесс замены лампочек, например в помещениях с высокими потолками или в люстрах со сложными конструкциями, где для замены лампочки приходится разбирать корпус самой люстры.

Низкая теплоотдача. Благодаря высокому коэффициенту полезного действия у энергосберегающих ламп, вся затраченная электроэнергия преобразуется в световой поток, при этом энергосберегающие лампы выделяют очень мало тепла (что актуально при нынешнем аномально жарком лете). В некоторых люстрах и светильниках опасно использовать обычные лампочки накаливания, из-за того что они выделяя большое количества тепла могут расплавить пластмассовую часть патрона, прилегающие провода или сам корпус, что в свою очередь может привести к пожару. Поэтому энергосберегающие лампы просто необходимо использовать в светильниках, люстрах и бра с ограничением уровня температуры.

Большая светоотдача. В обычной лампе накаливания свет идет только от вольфрамовой спирали. Энергосберегающая лампа светится по всей своей площади. Благодаря чему свет от энергосберегающей лампы получается мягкий и равномерный, более приятен для глаз и лучше распространяется по помещению.

Выбор желаемого цвета. Благодаря различным оттенкам люминофора, покрывающего корпус лампочки, энергосберегающие лампы имеют различные цвета светового потока, это может быть мягкий белый свет, холодный белый, дневной свет, и т.д.

Недостатки энергосберегающих ламп по сравнению с традиционными лампами накаливания

Высокая цена. Но энергосберегающая лампочка неспроста называется энергосберегающей. Учитывая экономию на электроэнергии при использовании этих ламп и их срок службы, в итоге, применение энергосберегающих ламп станет для вас и вашего бюджета более выгодным.

При использовании энергосберегающих ламп важно знать, что они требуют специальной утилизации, т.к. энергосберегающая лампа в своём составе имеет пары ртути, и выбрасывать такие лампы запрещено.

    Техническо-сравнительная характеристика энергосберегающих ламп и ламп накаливания

ЛОН (лампа общего назначения с нитью накаливания)

Люминесцентная энергосберегающая лампа

Нагрев

Сильно

сильно

Принцип работы

Нить накаливания излучат свет, при этом только 5% энергии идет на излучение света, остальное идет на выделение тепла.

Трубка, свернутая в спираль или змейку, наполненная парами ртути. На стенки трубки нанесен люминофор. Пары ртути под действием электрического разряда начинают излучать ультрафиолетовые лучи, которые попадая на люминофор, заставляют его излучать свет.

Энергопотребление

60 Вт - 95 Вт

12Вт = 75Вт. На момент включения, энергопотребление возрастает в 1, 5-2 раза и спадает только через 15-20 минут, когда пары ртути наэлектризуются.

Срок службы

700-1000 часов (3-6 месяцев)

5000-10 000 часов (2-3 года при условии качественной электроэнергии)

Ограничения

Температурный диапазон: до -15С,

Не любят частого включения – отключения,

Требуют 15-20 сек для выхода на полную мощность

Экологичность

Безопасна

Во время эксплуатации сквозь стекло проникает малая доля ультрафиолета, по этому, не рекомендуется устанавливать в настольные лампы.

Утилизация

Утилизируется как бытовой отход

Подлежит обязательной утилизации, т.к. содержит ядовитые пары ртути.

Гарантия

нет

12 месяцев



Глава 4.

Цель: Сравнить потребление электроэнергии энергосберегающих ламп с лампами накаливания.

Приборы: Настольная лампа с энергосберегающей лампочкой фирмы Хамелеон, Экономка, Тандер по 15 Вт и настольная лампа с лампочкой накаливания такой же мощности, однофазный счётчик.

Требования безопасности:

- Эксперимент проводить только при условии соблюдения техники безопасности.

-Осторожно! Электрический ток! Убедиться в том, что изоляция проводов не нарушена и приборы исправны.

-На столе не должно быть никаких посторонних предметов. Оберегать приборы от падения.

-Не оставлять без надзора включенные в сеть электрические устройства и приборы.

Ход эксперимента:

    Приготовить к эксперименту, включив однофазный счётчик и лампу накаливания. Записать начальные показания электросчётчика.

    Включить лампу накаливания на 30 минут и записать показания энергии по электросчетчику.

    Выполнить пункты 2 для других ламп.

    Вычислить разность показаний для каждой лампы и результаты записать в таблицу

Вид

электролампы

Предыдущие показания,

кВт∙ч

Промежуток времени наблюдения, часы

Текущие показания,

кВт∙ч

Разность показаний,

кВт∙ч

1

Накаливания

Энергосберегающая лампа фирмы Хамелеон

Энергосберегающая лампа фирмы Экономка

Энергосберегающая лампа фирмы Тандер

    Сравнить результаты потребления электроэнергии лампой накаливания и энергосберегающей лампой. Сделать вывод о потреблении электроэнергии разными лампами.

Вывод: Потребление электроэнергии энергосберегающей лампой меньше, чем потребление электроэнергии лампой накаливания. Таким образом, энергосберегающие лампы действительно экономят электроэнергию.

Опрос

Какими лампами Вы пользуетесь дома?

А. Лампами накаливания; Б. Энергосберегающими лампами;

В. И те и другие лампы; Г. Не знаю, как они называются.

2. Как долго Вы пользуетесь энергосберегающими лампами?

А. Не пользуюсь. Б. Около месяца.

В. Около полугода. Г. Больше года.

3. Заметили ли Вы экономию электроэнергии при пользовании энергосберегающими лампами по сравнению с лампами накаливания?

А. Да, большая экономия; Б. Да, но не очень большая экономия;

В. Нет никакой экономии; Г.Не заметили различия в потреблении электроэнергии.

4. Какие преимущества энергосберегающих ламп Вы можете назвать?

А. Экономия энергии и финансов. Б. Долгий срок службы.

В. Незначительное тепловыделение Г. Не мерцают

5. Какие недостатки энергосберегающих ламп Вы можете назвать?

А. Высокая стоимость. Б. Долгая фаза разогрева после включения.

В. Содержит ртуть Г.

6. Как относитесь к распоряжению президента о замене ламп накаливания на энергосберегающие?

А. Одобряю. Б. Не одобряю. В. Мне всё равно. Г. плохо

7. Как относитесь к тому, что лампы накаливания снимаются с производства?

А. Одобряю. Б. Не одобряю. В. Первый раз слышу. Г. Мне всё равно.

Мы получили следующие результаты:

Вопрос

Ответ А

Ответ Б

Ответ В

Ответ Г

1. Какими лампами Вы пользуетесь дома?

Лампами накаливания

Энергосберегающими лампами

33%

И те и другие лампы

61%

Не знаю, как они называются

2.Как долго Вы пользуетесь энергосберегающими лампами?

Не пользуюсь

Около месяца

20%

Около полугода

20%

Около года

40%

Больше двух лет 13%

3.Заметили ли Вы экономию?

Да, большая экономия

33%

Да, но не очень большая экономия

47%

Нет никакой экономии

Не заметили различия в потреблении энергии 13%

4.Преимущества энергосберегающих ламп

Экономия энергии и финансов 50%

Долгий срок службы

50%

Комфорт

13%

5.Недостатки энергосберегающих ламп

Высокая стоимость

27%

Долгая фаза разогрева

60%

Нет недостатков

13%

6.Отношение к распоряжению о замене ламп

Одобряю

47%

Не одобряю

20%

Мне всё равно

33%

7.Отношение к отмене производства ламп накаливания

Одобряю

27%

Не одобряю

20%

Первый раз слышу 20%

Мне всё равно

33%

Вывод: Таким образом, энергосберегающие лампы находят широкое применение в быту. Большинство опрошенных пока используют лампы накаливания и энергосберегающие лампы. Результаты опроса показывают, что энергосберегающие лампы являются востребованными, так как экономят электроэнергию.

Что делать, если разбилась энергосберегающая лампа в квартире?

Как и любой носитель ртути, разбитая энергосберегающая лампочка требует к себе аккуратного отношения.
Если вы разбили такую лампу ( памятка ):

    Откройте окна в квартире минимум на 15-20 минут, чтобы помещение как следует проветрилось;

    Воспользуйтесь одноразовыми резиновыми перчатками. Не трогайте лампу и ее осколки голыми руками;

    Не используйте щетку или пылесос, чтобы собрать осколки;

    Соберите все осколки с помощью куска твердого картона или плотной бумаги и поместите их в герметичный пластиковый пакет;

    Обработайте поверхность, на которой разбилась лампа, с помощью влажного бумажного полотенца или не нужной тряпки и поместите его в тот же пластиковый пакет;

    Не выбрасывайте осколки вместе со всем остальным мусором. Сдайте их в .

В случае если энергосберегающая лампочка получила повреждение или разбилась, необходимо проветрить помещение и убрать осколки. Лампы европейского производства содержат небольшое количество паров ртути в виде амальгамы и безвредны для здоровья. В российских и китайских лампочках при производстве используется жидкая ртуть и при повреждении таких ламп необходимо произвести уборку, используя средства защиты для рук и дыхания.

Внимание: не нужно трогать лампу голыми руками.

При уборке места падения лампочки следует быть аккуратным с осколками. В современных лампочках они очень тонкие и практически незаметные. Эту процедуру лучше всего проводить в резиновых перчатках, а еще лучше не трогать вовсе, просто воспользоваться веником и совком, старайтесь не вдыхать пары.

Место, где разбилась лампа, рекомендуется промыть 1-процентным раствором марганцево-кислого калия.

Так как количество ртути в люминесцентных лампах невелико, все, что осталось от лампы, можно утилизировать как обычный мусор (но лучше не выбрасывать осколки вместе со всем остальным мусором, а сдать их в специализированный пункт утилизации). Если речь идет не об одной лампе, то не стоит стесняться - нужно вызвать специалистов. Самый простой способ обратиться за их помощью - позвонить по телефону «01 или 112» и сообщить о том, что в квартире разбилось несколько энергосберегающих ламп на ртутной основе.

Ртуть и окружающая среда

Неорганическая ртуть опасна тем, что при взаимодействии с почвенными и водными микроорганизмами, она превращается в высокотоксичное вещество - метилртуть. Метилртуть, растворяясь в воде, может длительное время служить источником хронического загрязнения вод и окружающей среды. Считается, что употребление крупной океанической рыбы (тунец, меч-рыба) беременными женщинами может привести к попаданию метилртути через плаценту в ткани плода.

Как утилизировать энергосберегающие лампы?

Энергосберегающие лампы нельзя выбрасывать вместе с простым мусором ни в мусоропровод, ни в уличные мусорные баки. Положите лампу в герметичный пластиковый пакет и сдайте в специализированные пункты приема энергосберегающих ламп. Энергосберегающую лампу у вас должны принять в любом ДЭЗе на основании Распоряжение правительства Москвы «Об организации работ по сбору, транспортировке и переработке отработанных люминесцентных ламп» от 20 декабря 1999 г. № 1010-РЗП (по сведениям Greenpeace Россия). На данный момент энергосберегающие лампы принимают в тех ДЭЗах и РЭУ, в которых установлены специальные контейнеры по сбору таких ламп, а также в сервисном отделе всех магазинов ИКЕА.

Выводы по главе 2

Целый набор негативных эффектов при использовании энергосберегающих ламп позволяет сделать следующие выводы:

- не каждому человеку и не в каждой квартире будет комфортно при свете таких ламп. И это нельзя не учитывать!

- «лампочка Ильича» более безопасна для здоровья человека, хотя, как энергоисточник, - не выгодна;

- населению необходимо предоставить выбор в использовании тех или других ламп.

Заключение

Нашу жизнь невозможно представить без искусственного освещения. Для жизни и работы людям просто необходимо освещение с применением ламп. Раньше для этого использовались только обычные лампочки накаливания, которые были изобретены в 20 веке, а уже в следующем, двадцать первом веке, очень остро встала проблема дефицита ограниченных ресурсов. Экономия ресурсов потребовала создание инновационных решений в области сбережения энергии. Так и появились энергосберегающие лампы, которые вызвали спор в обществе: экономичны ли новые лампы при такой высокой стоимости и не вредны ли для здоровья?

Выполнив данную исследовательскую работу, мы сначала изучили строение тех и других ламп, изучили преимущества и недостатки энергосберегающих ламп. Мы узнали, что энергосберегающие лампы выделяют меньше тепла, чем лампы накаливания. Для примера можно отметить, что до горящей лампы мощностью 20Вт (аналог 100Вт лампочке) можно спокойно дотронуться рукой и не обжечься. Такое незначительное тепловыделение позволяет использовать компактные энергосберегающие лампы большой мощности в хрупких бра, нежных светильниках и люстрах, в которых от ламп накаливания с высокой температурой нагрева может оплавляться пластмассовая часть патрона или сам плафон. Лампы накаливания нагреваются примерно в 4 раза больше, чем энергосберегающие лампы. Покупая обычные лампочки, мы можем рассчитывать на их работу в течение пяти-шести месяцев. Как правило, после этого срока нить накаливания просто перегорает. В современных осветительных приборах нить накаливания просто отсутствует. Соответственно, и ломаться там нечему. Качественная лампочка энергосберегающего типа может работать до 12 000 часов, что равняется примерно 2-3 годам эксплуатации в достаточно интенсивном режиме. И при свете энергосберегающей лампы даже работается лучше. Учеными из ведущих мировых университетов доказано, что при свете энергосберегающих ламп у человека повышается работоспособность в 1,5 раза. Достигается это благодаря тому, что, энергосберегающая лампа не слепит глаза, в ней сбалансирована яркость света, чего ни в одной лампе накаливания не встретишь. Несмотря на все достоинства энергосберегающих ламп у них есть и свои недостатки. Это, например, то, что наполнитель энергосберегающих ламп содержит некоторое количество ртути, которая, несомненно является вредным ядом для человека и окружающей среды. Разработчики энергосберегающих ламп уже работают над этой проблемой – заменяют ртуть на другие похожие, подходящие вещества. Например, в лампах некоторых современных производителей не применяются вредные для человека и природы пары ртути. В колбу вместо жидкой ртути вводится металлический сплав (т.н. "амальгама" - амальгама кальция), где ртуть находится в связанном виде, поэтому при атмосферном давлении и комнатной температуре не испаряется, то есть не может попасть в воздух. Поэтому, даже если вдруг разобьется лампа, не потребуется трудоемкая очистка от ртути - достаточно просто собрать осколки и проветрить помещение.

Выполняя практическую часть работы, мы провели эксперименты по вычислению потребления электроэнергии, узнали мнение своих знакомых о новых энергосберегающих лампах и рассчитали материальные затраты на замену обычных ламп на энергосберегающие. Мы пришли к выводу, что потребление электроэнергии энергосберегающей лампой меньше, чем потребление электроэнергии лампой накаливания. Таким образом, энергосберегающие лампы действительно экономят электроэнергию. Так же результаты опроса показали, что энергосберегающие лампы являются востребованными, так как экономят электроэнергию. А расчеты финансовых затрат на замену ламп в своей квартире убедили нас, что энергосберегающие лампы, несмотря на высокую стоимость, действительно экономичнее.

Главное, что есть у человека и что он бережет больше всего, - это его здоровье. Поэтому, все изложенное выше позволяет задуматься о последствиях введения в оборот энергосберегающих ламп и их влияния на организм человека и планеты в целом.

В Европе сегодня предлагают отменить запрет на продажу ламп накаливания, действующий с 2009 года. Парламентарий призывает Еврокомиссию незамедлительно отменить действующие нормы и задуматься – не стоит ли, напротив, запретить торговлю пришедшими на смену привычным лампочкам энергосберегающими лампами .

Рекомендации

1. необходимо пересмотреть безусловный отказ от ламп накаливания и замену их на энергосберегающие лампы только за то, что вторые энергетически выгодны;

2. рассмотреть целесообразное использование энергосберегающих (ртутных) ламп для создания рассеянного освещения в помещениях большой площади: офисах, школах, учебных и проектных институтах, больницах, магазинах, банках, предприятиях.

3. рассмотреть возможность введения другого вида осветительных источников (например, светодиодных), более энергетически и экономически выгодных и не наносящих вреда здоровью человека;

4. проводить работу среди населения по соблюдению элементарных правил экономии электроэнергии, а именно: уходя, гасите свет!

Сегодня эти источники света получили настолько широкое распространение, что уже не вызывают ни у кого удивления. Тем не менее, принцип их работы и свойства пока еще мало знакомы подавляющему большинству людей, из-за чего сдерживается их распространение в такой сфере, например, как бытовая.

Между тем, их устройство похоже на известные всем люминесцентные осветители – та же стеклянная трубка, стенки которой изнутри покрыты люминофором, а сама она заполнена парами ртути и аргоном . На концах трубки имеется пара электродов, под воздействием электрического напряжения разогревающихся до 900-1000°С и не могущих более удерживать электроны, «испаряющиеся» под воздействием приложенного напряжения.

В процессе своего движения электроны сталкиваются с нейтральными атомами ртути и аргона, что приводит к образованию низкотемпературной плазмы, излучающей ультрафиолетовые волны. Люминофор, облучаемый ими, генерирует видимый свет, испускаемый наружу.

Так как электроды подключены к источнику переменного напряжения частотой в десятки килогерц, функции анода и катода исполняются ими попеременно и с той же частотой. Благодаря этому, а также инерционности нашего зрения, для человеческого глаза мерцание отсутствует.

Внешне эти источники света могут иметь различные формы , например, в виде груши или шара, цилиндра или свечи. От обычных ламп дневного света они отличаются несколько увеличенным цоколем. Дело в том, что в него изготовители смогли встроить стартер, совмещенный с высоковольтным генератором высокочастотного напряжения, благодаря которому давно знакомые всем приборы обрели новые замечательные свойства.

Энергосберегающие лампы - характеристики

Мощность - единица измерения – ватты (Вт, W). При увеличении мощности растут яркость и потребляемая электроэнергия. На упаковке обычно указывается, какой мощности необходимо взять обычную лампочку накаливания, чтобы получить от нее столько же света.

Световой поток - единица измерения – люмены (лм, Lm). Эта характеристика показывает эффективность преобразования электроэнергии в световое излучение, то есть чем больше световой поток, тем светлее. Обычно этот параметр снижается по мере эксплуатации источника света.

Цветовая температура - единица измерения – градусы Кельвина (К). Температура разогретой нити накала обыкновенной лампочки составляет примерно 2700 К (2427°С), а цвет ее свечения – желтый. Энергосберегающие приборы излучают видимый свет благодаря люминофору, изменяя химический состав которого, можно изменять и цвет свечения. Наличие у этих ламп такого свойства – огромное их преимущество, поскольку дает возможность подобрать наиболее подходящее освещение под конкретные условия. Для этих источников света цветовая температура может лежать в диапазоне от 2500 до 6500 К . Принято различать следующие их типы по данному параметру:

  • от 2700 К до 3200 К – излучают свет теплого белого цвета (увеличена доля красного в спектре белого), хорошо подходят в качестве источника света для жилых помещений;
  • от 4000 К до 4200 К – дают нейтральный белый свет, рекомендуемый для рабочих и офисных помещений, а также для мест общественного пользования;
  • от 6000 К до 6500 К – излучают холодный белый цвет, используемый в нежилых помещениях, уличных светильниках, театральных системах.

Коэффициент цветопередачи - относительная единица, характеризующая цветопередачу реального источника света по сравнению с идеальным источником, для которого этот параметр условно принят равным 100. Минимальное значение, как показывает практика, должно составлять 82, поскольку при меньших значениях появляется иллюзия тумана, тени при таком освещении выглядят размытыми, а предметы белого цвета выглядят неестественно резкими с зеленовато-синими оттенками.

Световая отдача - единица измерения – люмен на Ватт (лм/Вт, Lm/ W). Данная характеристика показывает эффективность излучателя и определяется как соотношение количества вырабатываемого им света в люменах к расходуемой для этого энергии в ваттах. На этом параметре базируется используемая сегодня система классификации приборов освещения по эффективности использования ими электроэнергии. В соответствии с нею все они разделены на 7 классов, обозначаемых латинскими буквами от А до G. Лампы накаливания относятся в данной системе к классам Е и F, а энергосберегающие приборы освещения относятся к классам А и В.

Достоинства и недостатки энергосберегающих ламп

Некоторые из преимуществ:

Некоторые из недостатков:

  • плавная регулировка яркости свечения сопряжена с большими техническими трудностями;
  • энергосберегающие источники света мощностью более нескольких сотен ватт найти очень сложно, а то и невозможно;
  • энергосберегающие приборы довольно инерционны и не допускают частых включений – выключений;
  • колбы энергосберегающих источников света содержат высокотоксичную ртуть, из-за чего необходимы специальные меры по их утилизации после окончания срока службы.

На какие характеристики обратить внимание

Собираясь сделать покупку, обратите внимание на перечисленные ниже характеристики - возможно, пригодятся.

Физические размеры

Энергосберегающие приборы имеют, по сравнению с лампочками накаливания, несколько большие габариты. В связи с этим при их приобретении необходимо проверить, подойдут ли они по своим размерам для тех светильников, в которые вы планируете их установить. Особенно актуальным этот вопрос является для различных светильников закрытого типа.

Размер и тип цоколя

Аналогично приборам накаливания, эти лампы также выпускаются с различного типа цоколями. Поэтому будьте внимательны при выборе необходимого вам источника света.

Цвет излучаемого света

Выше уже указывалось на то, что лампы данного типа могут выпускаться с различным белым светом – от «холодного» до «теплого». В связи с этим обратите внимание на то, где именно предполагается эксплуатация лампы и на желательный оттенок ее света.

Мощность

Чтобы определиться с этим параметром, необходимо помнить о том, что энергосберегающие лампы потребляют в 4 (а высококачественные – в 5) раз меньше электроэнергии, чем лампы накаливания, при той же потоке света.

Срок службы

Выше уже говорилось, что этот параметр у энергосберегающих ламп значительно превосходит аналогичный для ламп накаливания. Учитывая этот параметр, так же как и в случае с мощностью, необходимо обратить внимание на качество лампы – у «фирменных» ламп срок службы обычно больше, но и стоят они дороже.

Световая отдача

Один из наиболее важных параметров с точки зрения потребителя. Идеальная лампа всю потребляемую электроэнергию преобразует в свет заданной длины волны. В этом случае световая отдача составила бы 683 лм/Вт. Однако, на самом деле реальные лампы расходуют электроэнергию не только на полезный свет, но также и на тепло, на излучение света в ультрафиолетовой и инфракрасной частях спектра. Световая отдача обычно не приводится на упаковке лампы, однако ее несложно вычислить, разделив световой поток лампы на ее мощность.

Световой поток

Часть излучаемого света любой энергосберегающей лампы приходится на ультрафиолетовую и инфракрасную части спектра, хотя и бесполезные, но также требующие затрат электроэнергии. В связи с этим, приобретая такую лампу, необходимо обращать внимание на такой ее параметр, как величина светового потока. Разные изготовители вполне могут предложить одинаковой мощности лампы, но с разным световым потоком. В этом случае, если все остальные параметры идентичны, необходимо покупать лампу у того изготовителя, у которого этот параметр имеет большее значение.

Конструкция и детали

Любая энергосберегающая лампа имеет пластиковый корпус между стеклянной колбой и цоколем, внутри которого находится специальная электронная схема. Эта схема также стоит денег, и чем выше качество ее компонентов, тем выше ее стоимость.

Кроме того, на стоимость влияет также и такой параметр, как коэффициент запаса – у дорогих ламп отдельные детали схемы работают с «недогрузом», а у дешевых ламп – с «перегрузом». Соответственно во втором случае детали будут греться сильнее и к выходу из строя они значительно ближе, нежели детали из первого случая. Второй случай выясняется довольно быстро – при включении такой лампы из-под ее цоколя довольно быстро появляются запахи (признак перегрева!), которых быть не должно.

Рассеяние тепла

Поскольку часть электроэнергии всегда уходит на нагрев, то актуальным был и остается вопрос его отвода. В дорогих лампах этот вопрос решен применением деталей с запасом по мощности, благодаря чему они работают, не будучи нагруженными «под завязку». Также в них и сама конструкция весьма тщательно проработана, и материалы применены эффективные с точки зрения рассеяния тепла, то есть технический уровень конструкции в целом – весьма высок.

Если же выбирается лампа из тех, что далеко от фирменных, то в этом случае практичнее выглядит выбор лампы с не самым маленьким корпусом (такая характеристика, как компактность – враг эффективного теплоотвода), а также с вентиляционными отверстиями в ее корпусе, если таковые имеются.

Экономия – пример расчета

Возьмем для примера лампу накаливания со сроком службы 1000 часов и энергосберегающую лампу типа «Navigator» со сроком службы 8000 часов.

Стоимость этих ламп при их мощности в 100 и 20 Вт соответственно составляет около 0.2 и 4.0.

Предположим, что текущая стоимость электроэнергии составляет 0.1 за 1 кВт*час.

  • Чтобы светить 8000 часов, понадобится 8 ламп накаливания, то есть стоимость приборов освещения составит 0.2 х 8 = 1.6 .
  • Эти лампы за это время израсходуют 100 х 8000 = 800000 Вт*час или 800 кВт*час электроэнергии.
  • При оговоренной цене общая сумма затрат на электроэнергию составит 0.1 * 800 = 80 .
  • Всего, таким образом, расходы составят 1.6 + 80 = 81.6 $ .
  • Для случая с энергосберегающей лампой электроэнергии потребуется 20 * 8000 = 160000 Вт*час или 160 кВт*час.
  • Стоимость ее составит 0.1 * 160 = 16 .
  • Всего для этого случая расходы составят 4.0 + 16.0 = 20.0 $ .
  • То есть при заданных параметрах экономия составит 81.6 – 20.0 = 61.6 $ .

Трехкратная экономия, и это при том, что не предпринималось никаких особых мер по выбору самого экономичного решения!

Несколько замечаний из практики

Срок эксплуатации зависит, в первую очередь, от изготовителя, то есть от качества производства. Так, например, типичный срок службы ламп, относящихся к «фирменным» (и стоящих соответственно дороже), составляет не менее 12-15 тысяч часов. Такие же приборы, но из разряда «попроще», стоят дешевле, но и срок их службы не превышает обычно 6-10 тысяч часов. Самые дешевые, иногда с неизвестным изготовителем, лампы рассчитаны на якобы 3-4 тысячи часов , но нередко выходят из строя гораздо раньше ввиду низкого качества их изготовления. Откровенный брак среди них, увы, не является редкостью, поскольку весьма часто появляется благодаря несовершенному их производству.

Энергосберегающие приборы со встроенной в них технологией «плавного старта» наиболее предпочтительны для требовательного покупателя, поскольку эта технология работы обеспечивает им как минимум несколько тысяч «дополнительных» часов жизни. Такие лампы в момент включения, пока они не разогреты (и холодные, соответственно), автоматически включаются не на полную их мощность – на нее они переключаются спустя одну или две минуты после включения.

Срок жизни энергосберегающих ламп сильно зависит и от того, насколько часто их включают - выключают, то есть меняют режим работы . Чем реже это будет происходить, тем дольше будет служить лампа. Специалистами фирмы General Electric рекомендуется выключать энергосберегающие лампы не раньше, чем через 5-10 минут после включения.

И еще один практический совет – энергосберегающие приборы ни в коем случае не рекомендуется подключать к электросети через различные устройства плавного пуска или блоки защиты от скачков напряжения. Технические приспособления такого рода могут «спасти» лампу накаливания, но способны привести энергосберегающую лампу к быстрой «кончине» ввиду принципиально разных алгоритмов работы этих ламп.

Постоянно растущие тарифы на оплату электроэнергии заставляют людей влезать в долги, затягивать пояса или просто ограничивать до минимума использование электроприборов. Но если без телевизора или компьютера еще как-то можно обойтись, то без освещения ни еду приготовить, ни книгу почитать.

Остановится ли когда-нибудь рост тарифов на электроэнергию или как говорят в простонародье «нет предела совершенству». Единственное, что остается нам простым смертным – это жесткая экономия.

Обычно система лампового освещения наших жилищ, может состоять из трех видов ламп:

  • Накаливания;
  • Энергосберегающий;
  • Светодиодных;

Прежде, чем говорить о плюсах и минусах различных ламп, необходимо сказать несколько слов об их конструктивных особенностях.

Первая подопытная, всем нам знакомая еще с детства – лампа накаливания или «лампочка Ильича». Она состоит из:


  1. нити накала;
  2. стеклянной колбы;
  3. электродов;
  4. цоколя;
  5. центрального контакта.

Вторая «гостья» — это энергосберегающая лампа. В свою очередь она стоит из:

  1. цоколя;
  2. корпуса самой лампы;
  3. предохранителя;
  4. платы управления;
  5. держателя стеклянной трубки;
  6. люминесцентной лампы.

Ну и наконец, третья «барышня» — это светодиодная лампа. Которая состоит из:


  1. светорассеивателя;
  2. мощного светодиода или светодиодной сборке;
  3. радиатора, который отводит выделяемое при работе светодиода тепло;
  4. управляющего драйвера;
  5. цоколя.

С конструкциями разобрались, переходим к цифрам.

Для того, чтобы не быть многословным, сравним энергопотребление всех трех ламп, чтобы «не словом, а делом разобраться, кто нам друг, а кто нам враг». Свет от лампы накаливания мощностью в 100 Вт равен свету от энергосберегающей лампы мощностью в 20 Вт, и равен свету от светодиодной лампы мощностью в 12 Вт. Прибегнув к простым математическим расчетам, выяснили, что энергосберегающая лампа в 5 раз, а светодиодная в 8 раз экономнее, чем лампа накаливания.

Приступим непосредственно к обсуждению плюсов и минусов использования тех или иных ламп.

Если с лампой накаливания всё и так понятно – с ней много не сэкономишь, то насчет двух других, мы сегодня постараемся разобраться.


Преимущества энергосберегающих ламп:

  • Длительный срок службы.
  • Низкое энергопотребление;
  • Гарантия от завода изготовителя.
  • Электронный блок устраняет стробоскопический эффект;
  • Тот же электронный блок сглаживает пульсации напряжение в сети электропитания, обеспечивая таким образом ровное и стабильное свечение.

Недостатки энергосберегающих ламп:

  • Высокая стоимость;
  • В люминесцентной трубке содержатся пары ртути;
  • Существуют неподтверждённые данные, которые говорят о том, свет от энергосберегающей лампы увеличивает риск развития кожных заболеваний. Свет от таких ламп может вызывать мигрень, головокружение у людей страдающих эпилепсией.
  • Дешевые китайские подделки могут мерцать, что вызовет неприятные ощущения при нахождении в комнате с таким источником света.
  • Такие лампы следует не просто выбрасывать в мусорное ведро. Их следует утилизировать, как опасные отходы.


Преимущества светодиодных ламп:

  • Низкое энергопотребление (в сравнении с лампами накаливания);
  • Длительный срок службы;
  • Они не содержат паров ртути (в отличии от энергосберегающих ламп);
  • Ударопрочные.

Теперь поговорим о недостатках светодиодных ламп

Цена . В сравнении с лампочками Ильича довольно ощутимая.

Существенным недостатком, о котором умалчивают производители (вернее не умалчивают, а нагло врут) – это реальный срок службы . При длительном использовании таких ламп, рекомендую сразу выучить такой термин, как деградация (медленное отмирание кристаллов светодиодных ламп). Она начинается с того, что лампа теряет яркость, а потом просто гаснет. Скептики скажут – но ведь деградация происходить не сразу. Это да, она приходит со временем, но ведь вы и лампу берете с учетом длительного использования не на год или два, не так ли?

Для того, чтобы эти лампы «жили долго и счастливо» для их питания нужно применять специфические источники питания (ИП) (импульсные), а из-за того что перепады напряжения в сетях электропитания не вкладываются ни в какие ГОСТы, ИП мрут, как мухи. Кроме этого светодиоды греются и довольно прилично. Поэтому их еще и охлаждать нужно . Без питания и охлаждения деградация кристалла происходит очень быстро.

В некоторых типах светодиодов, что используются в автомобильных фарах/стоп сигналах, светофорах содержится свинец , мышьяк и другие потенциально опасные элементы таблицы Менделеева (а они только о парах ртути думают).

Вопрос влияния излучения светодиодов на сетчатку глаза изучают довольно плотно. Светодиодные лампы излучают свет в узком диапазоне, а основной цвет излучения зависит от использованных при изготовлении светодиода химических элементов.

Вернемся в школу. Инфракрасная составляющая освещения безвредная для здоровья человека, в отличии от ультрафиолетовой составляющей. Чрезмерное облучение несёт серьезный вред здоровью. Датирует мнение, что в спектре излучения светодиодов ультрафиолетовая составляющая отсутствует полностью, но это далеко не так.

Белого света в природе нет. Его получают при помощи смешивания нескольких химических элементов. На сегодня наиболее дешевым и массовым способом получения белого света - нанесение цветного люминофора на поверхность УЛЬТРАФИОЛЕТОВОГО светодиода. Иными словами завуалированный ультрафиолетовый излучатель…

Светодиодные лампы не мерцают (в отличии от люминесцентных ламп), но это касается только тех изделий, которые используют высококачественные (а значит и высоко стоимостные) блоки питания (БП ещё называют драйверами), китайский же ширпотреб мерцает не хуже люминесцентных.

Уважаемые читатели, я некоим образом не пытаюсь сказать, что какой-то определенный тип ламп — это сущее зло. Просто для каждой лампы есть свой ареал использования, например, использовать светодиодные лампы в качестве основного источника света в спальне, на кухне или кабинете – довольно неудачная затея. Идеальные места для них – это подсобка, подъезд, коридор, туалет, тамбур.

Что же касается энергосберегающих ламп, их обычно принято устанавливать в светильниках, что расположены в труднодоступных местах, чтобы часто не менять их, в отличии от лампочек накаливания.

На этом всё. Спасибо за внимание.