Звезда и треугольник принцип подключения. Соединение звездой и треугольником обмоток электродвигателя

Вся нагрузка в трёхфазных цепях соединяется по схеме звезда или треугольник. В зависимости от вида потребителей электроэнергии и напряжения в электросети и выбирают соответствующий вариант. Если говорить об электродвигателях, то от выбора варианта соединения обмоток зависит возможность его работы в конкретной сети с номинальными характеристиками. В статье мы рассмотрим, чем отличаются звезда и треугольник в электродвигателе, на что они влияют и какой принцип подключения проводов в клеммнике трёхфазного двигателя.

Теория

Как уже было сказано, схемы соединения звезда и треугольник характерны не только для электродвигателя, но и для обмоток трансформатора, нагревательных элементов (например, тэнов электрокотла) и другой нагрузки.

Чтобы понять почему эти схемы соединения элементов трёхфазной цепи так называются, нужно их несколько видоизменить.

В «звезде», нагрузка каждой из фаз соединена между собой одним из выводов, это называется нейтральная точка. В «треугольнике» каждый из выводов нагрузки подключается к разноимённым фазам.

Рассмотрим этот вопрос на примере соединения обмоток трёхфазного трансформатора или трёхфазного двигателя (в этом контексте это не имеет значения).

На этом рисунке отличия более заметны, в «звезде» начала обмоток подключаются к фазным проводникам, а концы соединяются вместе, в большинстве случаев к этой же точке нагрузки подключается нулевой провод от питающего генератора или трансформатора.

Точкой обозначены начала обмоток.

То есть в «треугольнике» конец предыдущей обмотки и начало следующей соединяются, и к этой точке подключается питающая фаза. Если перепутать конец и начало - подключаемая машина не будет работать.

В чем разница

Если говорить о подключении однофазных потребителей, кратко разберем на примере трёх электротенов, то в «звезде», если сгорит один из них продолжат работать два оставшихся. Если сгорит два из трёх – вообще ни один не будет работать, поскольку они попарно подключаются на линейное напряжение.

В схеме треугольника даже при перегорании 2 тэнов – третий продолжит работать. В ней нет нулевого провода, его просто некуда подключать. А в «звезде» его подключают к нейтральной точке, и нужен он для уравнивания токов фаз и их симметрии в случае разной нагрузки по фазам (например, в одной из веток подключен 1 ТЭН, а в остальных по 2 параллельно).

Но если при таком соединении (с разной нагрузкой по фазам) отгорит ноль, то напряжения будут неодинаковы (там, где больше нагрузка просядет, а где меньше – возрастёт). Подробнее об этом мы писали в статье о

При этом нужно учесть, что подключать обычные однофазные приборы (220В) между фазами, на 380В, нельзя. Либо приборы должны быть рассчитаны на такое питание, либо сеть должна быть с Uлинейным 220В (как в электросетях с некоторых специфичных объектов, например, кораблей).

Но, при , ноль к средней точке звезды часто не подключают, так как это симметричная нагрузка.

Формулы мощности, тока и напряжения

Начнем с того что в схеме звезды есть два разных напряжения – линейное (между линейными или фазными проводами) и фазное (между фазой и нулём). Uлинейное в 1,73 (корень из 3) раз больше Uфазного. При этом линейный и фазный токи равны.

То есть соотносятся так, что при линейном в 380В, фазное равно 220В.

В «треугольнике» Uлинейное и Uфазное равны, а токи отличаются в 1,73 раза.

В обоих случаях считают по одинаковым формулам:

  • полная S = 3*Sф = 3*(Uл/√3)*I = √3*Uл*I;
  • активная P = √3*Uл*I*cos φ;
  • реактивная Q = √3*Uл*I*sin φ.

При подключении одной и той же нагрузки на те же Uфазное и Uлинейное, мощность подключённых приборов будет отличаться в 3 раза.

Допустим, есть двигатель, который работает от трёхфазной сети 380/220В, а его обмотки рассчитаны на подключение по «звезде» к электросети с Uлинейным в 660В. Тогда при подключении в «треугольник» питающее Uлинейное должно быть в 1,73 раза меньше, то есть 380В, что подходит для подключения к нашей сети.

Приведем расчеты, чтобы показать, какие отличия для двигателя будут при переключении обмоток с одной схемы на другую.

Допустим, что ток статора при подключении в треугольник в сеть 380В был 5А, тогда полная его мощность равняется:

S=1,73*380*5=3287 ВА

Переключим электродвигатель на «звезду» и мощность снизится в 3 раза, так как напряжение на каждой обмотке снизилось в 1,73 раза (было 380 на обмотку, а стало 220), и ток тоже в 1,73 раза: 1,73*1,73=3. Значит с учетом пониженных величин проведем расчет полной мощности.

S=1,73*380*(5/3)=1,73*380*1,67=1070 ВА

Как видите – мощность упала в 3 раза!

Но что будет, если есть другой электродвигатель и он работал в «звезде» в сети 380В и током статора в те же 5А, соответственно и обмотки рассчитаны для подключения в «треугольник» на 220В (3 фазы), но по какой-то причине их соединили именно в «треугольник» и подключили к 380В?

В этом случае мощность вырастет 3 раза, так как напряжение на обмотку теперь наоборот увеличилось в 1,73 раза и ток во столько же.

S=1,73*380*5*(3)=9861 ВА

Мощность двигателя стала больше номинальной в эти самые 3 раза. Значит он просто сгорит!

Поэтому нужно подключать электродвигатель по той схеме соединения обмоток, которая соответствует их номинальному напряжению.

Практика - как выбрать схему для конкретного случая

Чаще всего электрики работают с сетью 380/220В, так рассмотрим же как подключить, звездой или треугольником, электродвигатель к такой трёхфазной электросети.

В большинстве электродвигателей может быть изменена схема соединения обмоток, для этого в брно есть шесть клемм, расположены они таким образом, чтобы с помощью минимального набора перемычек можно было собрать нужную вам схему. Простыми словами: вывод начала первой обмотки расположен над концом третьей, начала второй, над концом первой, начало третьей над концом второй.

Как отличить два варианта подключения электродвигателя вы видите на рисунке ниже.

Поговорим о том, какую схему выбирать. Схема подключения катушек электродвигателя не имеет особого влияния на режим работы двигателя, при условии соответствия номинальным параметрам двигателя питающей сети. Для этого смотрим на шильдик и определяем, на какие напряжения рассчитана конкретно ваша электрическая машина.

Обычно маркировка имеет вид:

Это расшифровывается так:

Если межфазное напряжение равно 220 – собирайте обмотки в треугольник, а если 380 – в звезду.

Чтобы просто ответить на вопрос «Как соединить обмотки у двигателя?» мы сделали для вас таблицу выбора схемы соединения:

Переключение со звезды на треугольник для плавного пуска

При запуске электродвигателя наблюдаются высокие пусковые токи. Поэтому для снижения пусковых токов асинхронных двигателей используется схема пуска с переключением обмоток со звезды на треугольник. При этом, как было сказано выше, электродвигатель должен быть рассчитан подключение в «треугольник» и работе под Uлинейным вашей сети.

Таким образом в наших трёхфазных электросетях (380/220В) для таких случаев используют двигатели номинальными «380/660» Вольт, для «Δ/Y» соответственно.

При пуске обмотки включаются «звездой» на пониженное напряжение 380В (относительно номинальных 660В), двигатель начинает набирать обороты и в определенный момент времени (обычно по таймеру, в усложненных вариантах - по сигналу датчиков тока и оборотов) обмотки переключаются в «треугольник» и работают уже на своих номинальных 380 вольтах.

На иллюстрации выше описан такой способ пуска двигателей, но в качестве примера изображен перекидной рубильник, на практике же используют два дополнительных контактора (КМ2 и КМ3), она хоть и сложнее обычной схемы подключения электродвигателя, но это не является её недостатком. Зато у неё целый ряд преимуществ:

  • Меньше нагрузка на электросеть от пусковых токов.
  • Соответственно меньшие просадки напряжения и уменьшается вероятность остановки сопутствующего оборудования.
  • Мягкий пуск двигателя.

Есть два главных недостатка этого решения:

  1. Нужно прокладывать два трёхжильных кабеля от места расположения контакторов непосредственно до клемм двигателя.
  2. Падает пусковой момент.

Заключение

Как таковые различия в рабочих характеристиках при подключении одного и того же электродвигателя по схеме звезда или треугольник нет (он просто сгорит, если вы ошибетесь при выборе). Также, как и нет преимуществ и недостатков какой-либо из схем. Некоторые авторы приводят в качестве аргумента то, что в «звезде» ток меньше. Но при аналогичной мощности двух разных двигателей, один из которых рассчитан на подключение в «звезде», а второй в «треугольнике» к сети, например, 380В - ток будет одинаковым. А один и тот же двигатель нельзя переключать «как попало» и «непонятно для чего», так как он просто сгорит. Главное выбирать тот вариант, который соответствует напряжению питающей сети.

Надеемся, теперь вы стало больше понятно про то, что собой представляет схема звезда и треугольник в электродвигателе, какая разница в подключении каждым из способов и как выбрать схему для конкретного случая. Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы

Трехфазные асинхронные двигатели совершенно заслужено являются самыми массовыми в мире, благодаря тому, что они очень надежны, требуют минимального технического обслуживания, просты в изготовлении и не требуют при подключении каких-либо сложных и дорогостоящих устройств, если не требуется регулировка скорости вращения. Большинство станков в мире приводятся в действие именно трёхфазными асинхронными двигателями, они также приводят в действие насосы, электроприводы различных полезных и нужных механизмов.

Но как быть тем, кто в личном домовладении не имеет трехфазного электроснабжения, а в большинство случаев это именно так. Как быть, если хочется в домашней мастерской поставить стационарную циркулярную пилу, электрофуганок или токарный станок? Хочется порадовать читателей нашего портала, что выход из этого затруднительного положения есть, причем достаточно просто реализуемый. В этой статье мы намерены рассказать, как подключить трехфазный двигатель в сеть 220 В.

Принципы работы трехфазных асинхронных двигателей

Рассмотрим кратко принцип работы асинхронного двигателя в своих «родных» трехфазных сетях 380 В. Это очень поможет впоследствии адаптировать двигатель для работы в других, «не родных» условиях – однофазных сетях 220 В.

Устройство асинхронного двигателя

Большинство производимых в мире трехфазных двигателей – это асинхронные двигатели с короткозамкнутым ротором (АДКЗ), которые не имеют никакой электрической контактной связи статора и ротора. В этом их основное преимущество, так как щетки и коллекторы, – самое слабое место любого электродвигателя, они подвержены интенсивному износу, требуют технического обслуживания и периодической замены.

Рассмотрим устройство АДКЗ. Двигатель в разрезе показан на рисунке.


В литом корпусе (7) собран весь механизм электродвигателя, включающий две главные части – неподвижный статор и подвижный ротор. В статоре имеется сердечник (3), который набран из листов специальной электротехнической стали (сплава железа и кремния), которая обладает хорошими магнитными свойствами. Сердечник набран из листов по причине того, что в условиях переменного магнитного поля в проводниках могут возникнуть вихревые токи Фуко, которые в статоре нам абсолютно не нужны. Дополнительно каждый лист сердечника еще покрыт с обеих сторон специальным лаком, чтобы вообще свести на нет протекание токов. Нам от сердечника нужны только магнитные его свойства, а не свойства проводника электрического тока.

В пазах сердечника уложена обмотка (2), выполненная из медного эмалированного провода. Если быть точным, то обмоток в трехфазном асинхронном двигателе как минимум три – по одной на каждую фазу. Причем уложены это обмотки в пазы сердечника с определенным порядком – каждая расположена так, что находится под угловым расстоянием в 120° к другой. Концы обмоток выведены в клеммную коробку (на рисунке она расположена в нижней части двигателя).

Ротор помещен внутрь сердечника статора и свободно вращается на валу (1). Зазор между статором и ротором для повышения КПД стараются сделать минимальным – от полумиллиметра до 3 мм. Сердечник ротора (5) также набран из электротехнической стали и в нем тоже имеются пазы, но они предназначены не для обмотки из провода, а для короткозамкнутых проводников, которые расположены в пространстве так, что напоминают беличье колесо (4), за что и получили свое название.


Беличье колесо состоит из продольных проводников, которые связаны и механически, и электрически с торцевыми кольцами Обычно беличье колесо изготавливают путем заливки в пазы сердечника расплавленного алюминия, а заодно еще формуют монолитом и кольца, и крыльчатки вентиляторов (6). В АДКЗ большой мощности в качестве проводников клетки применяют медные стержни, сваренные с торцевыми медными кольцами.

Что такое трехфазный ток

Для того чтобы понять какие силы заставляют вращаться ротор АДКЗ, надо рассмотреть что такое трехфазная система электроснабжения, тогда все встанет на свои места. Мы все привыкли к обычной однофазной системе, когда в розетке есть только два или три контакта, один из которых (L), второй рабочий ноль (N), а третий защитный ноль (PE). Среднеквадратичное фазное напряжение в однофазной системе (напряжение между фазой и нулем) равно 220 В. Напряжение (а при подключении нагрузки и ток) в однофазных сетях изменяются по синусоидальному закону.


Из приведенного графика амплитудно-временной характеристики видно, что амплитудное значение напряжения не 220 В, а 310 В. Чтобы у читателей не было никаких «непоняток» и сомнений, авторы считают своим долгом сообщить, что 220 В – это не амплитудное значение, а среднеквадратичное или действующее. Он равно U=U max /√2=310/1,414≈220 В. Для чего это делается? Только для удобства расчетов. За эталон принимают постоянное напряжение, по его способности произвести какую-то работу. Можно сказать, что синусоидальное напряжение с амплитудным значением в 310 В за определенный промежуток времени произведет такую же работу, которое бы сделало постоянное напряжение 220 В за тот же промежуток времени.

Надо сразу сказать, что практически вся генерируемая электрическая энергия в мире трехфазная. Просто с однофазной энергией проще управляться в быту, большинству потребителей электроэнергии достаточно и одной фазы для работы, да и однофазные проводки гораздо дешевле. Поэтому из трехфазной системы «выдергивается» один фазный и нулевой проводник и направляются к потребителям – квартирам или домам. Это хорошо видно в подъездных щитах, где видно, как с одной фазы провод идет в одну квартиру, с другой во вторую, с третьей в третью. Это так же хорошо видно на столбах, от которых линии идут к частным домовладениям.

Трехфазное напряжение, в отличие от однофазного, имеет не один фазный провод, а три: фаза A, фаза B и фаза C. Фазы еще могут обозначать L1, L2, L3. Кроме фазных проводов, естественно, присутствует еще общий для всех фаз рабочий ноль (N) и защитный ноль (PE). Рассмотрим амплитудно-временную характеристику трехфазного напряжения.


Из графиков видно, что трехфазное напряжение – это совокупность трех однофазных, с амплитудой 310 В и среднеквадратичным значением фазного (между фазой и рабочим нулем) напряжения в 220 В, причем фазы смещены относительно друг друга с угловым расстоянием 2*π/3 или 120°. Разность потенциалов между двумя фазами называют линейным напряжением и оно равно 380 В, так как векторная сумма двух напряжений будет U л =2* U ф * sin(60°)=2*220* √3/2=220* √3=220*1,73=380,6 В , где U л – линейное напряжение между двумя фазами, а U ф – фазное напряжение между фазой и нулем.

Трехфазный ток легко генерировать передавать к месту назначения и в дальнейшем преобразовывать в любой нужный вид энергии. В том числе и в механическую энергию вращения АДКЗ.

Как работает трехфазный асинхронный двигатель

Если подать переменное трехфазное напряжение на обмотки статора, то через них начнут протекать токи. Они, в свою очередь, вызовут магнитные потоки, также изменяющиеся по синусоидальному закону и также сдвинутые по фазе на 2*π/3=120°. Учитывая, что обмотки статора расположены в пространстве на таком же угловом расстоянии – 120°, внутри сердечника статора образуется вращающееся магнитное поле.

трехфазный электродвигатель


Это постоянно изменяющееся поле пересекает «беличье колесо» ротора и вызывает в нем ЭДС (электродвижущую силу), которая также будет пропорциональна скорости изменения магнитного потока, что на математическом языке означает производную от магнитного потока по времени. Так как магнитный поток изменяется по синусоидальному закону, значит, ЭДС будет изменяться по закону косинуса, ведь (sinx )’= cosx . Из школьного курса математики известно, что косинус «опережает» синус на π/2=90°, то есть, когда косинус достигает максимума, синус его достигнет через π/2 — через четверть периода.

Под воздействием ЭДС в роторе, а, точнее, в беличьем колесе возникнут большие токи, учитывая, что проводники замкнуты накоротко и имеют низкое электрическое сопротивление. Эти токи образуют свое магнитное поле, которое распространяется по сердечнику ротора и начинает взаимодействовать с полем статора. Разноименные полюса, как известно, притягиваются, а одноименные отталкиваются друг от друга. Возникающие силы создают момент заставляющий ротор вращаться.

Магнитное поле статора вращается с определенной частотой, которая зависит от питающей сети и количества пар полюсов обмоток. Рассчитывается частота по следующей формуле:

n 1 = f 1 *60/ p, где

С частотой переменного тока все понятно – она в наших сетях электроснабжения составляет 50 Гц. Число пар полюсов отражает, сколько пар полюсов имеется на обмотке или обмотках, принадлежащих одной фазе. Если к каждой фазе подключается одна обмотка, отстоящая на 120° от других, то число пар полюсов будет равно единице. Если одной к одной фазе подключаются две обмотки, тогда число пар полюсов будет равно двум и так далее. Соответственно и меняется угловое расстояние между обмотками. Например, при числе пар полюсов равным двум, в статоре размещается обмотка фазы A, которая занимает сектор не 120°, а 60°. Затем за ней следует обмотка фазы B, занимающая такой же сектор, а затем и фазы C. Далее чередование повторяется. При увеличении пар полюсов соответственно уменьшаются сектора обмоток. Такие меры позволяют уменьшить частоту вращения магнитного поля статора и соответственно ротора.

Приведем пример. Допустим, трехфазный двигатель имеет одну пару полюсов и подключен к трехфазной сети частотой 50 Гц. Тогда магнитное поле статора будет вращаться с частотой n 1 =50*60/1=3000 об/мин. Если увеличить количество пар полюсов – во столько же раз уменьшится частота вращения. Чтобы поднять обороты двигателя, надо увеличить частоту , питающего обмотки. Чтобы изменить направление вращения ротора, надо поменять местами две фазы на обмотках

Следует отметить, что частота вращения ротора всегда отстает от частоты вращения магнитного поля статора, поэтому двигатель и называется асинхронным. Почему это происходит? Представим, что ротор вращается с той же скоростью, что и магнитное поле статора. Тогда беличье колесо не будет «пронизывать» переменное магнитное поле, а оно будет для ротора постоянным. Соответственно не будет наводиться ЭДС и перестанут протекать токи, не будет взаимодействия магнитных потоков и исчезнет момент, приводящий ротор в движение. Именно поэтому ротор находится «в постоянном стремлении» догнать статор, но никогда не догонит, так как исчезнет энергия, заставляющая вращаться вал двигателя.

Разницу частот вращения магнитного поля статора и вала ротора называют частотой скольжения, и она рассчитывается по формуле:

n= n 1 -n 2 , где

  • n1 – частота вращения магнитного поля статора.
  • n2 – частота вращения ротора.

Скольжением называется отношение частоты скольжения к частоте вращения магнитного поля статора, оно рассчитывается по формуле: S=∆ n/ n 1 =(n 1 — n 2)/ n 1 .

Способы подключения обмоток асинхронных двигателей

Большинство АДКЗ имеет три обмотки, каждая из которых соответствует своей фазе и имеет начало и конец. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – ее конец, то есть обмотка U имеет два вывода U1 и U2, обмотка V–V1 и V2, а обмотка W – W1 и W2.

Однако еще до сих пор в эксплуатации находятся асинхронные двигатели, сделанные во времена СССР и имеющие старую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, о концы C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая C2 и C5, а третья C3 и C6. Соответствие старых и новых систем обозначений представлено на рисунке.


Рассмотрим, как могут соединяться обмотки в АДКЗ.

Соединение звездой

При таком соединении все концы обмоток объединяют в одной точке, а к их началам подключают фазы. На принципиальной схеме такой способ подключения действительно напоминает звезду, за что и получил название.


При соединении звездой к каждой обмотке в отдельности приложено фазной напряжение в 220 В, а к двум обмоткам, соединенных последовательно линейное напряжение 380 В. Главное преимущество такого способа подключения – это небольшие токи запуска, так как линейное напряжение приложено к двум обмоткам, а не к одной. Это позволяет двигателю «мягко» стартовать, но мощность его будет ограничена, так как протекающие токи в обмотках будут меньше, чем при другом способе подключения.

Соединение треугольником

При таком соединении обмотки объединяют в треугольник, когда начало одной обмотки соединяется с концом следующей – и так по кругу. Если линейное напряжение в трехфазной сети 380 В, то через обмотки будут протекать токи гораздо больших величин, чем при соединении звездой. Поэтому мощность электродвигателя будет выше.


При соединении треугольником в момент запуска АДКЗ потребляет большие пусковые токи, которые могут в 7-8 раз превышать номинальные и способны вызвать перегрузку сети, поэтому на практике инженеры нашли компромисс – запуск двигателя и его раскручивание до номинальных оборотов производится по схеме звезда, а затем происходит автоматическое переключение на треугольник.

Как определить, по какой схеме подключены обмотки двигателя?

Прежде чем подключать трехфазный двигатель к однофазной сети 220 В, необходимо выяснить по какой схеме подключены обмотки и при каком рабочем напряжении может работать АДКЗ. Для этого необходимо изучить табличку с техническими характеристиками – «шильдик», который должен быть на каждом двигателе.


На такой табличке — «шильдике», можно узнать много полезной информации

На табличке имеется вся необходимая информация, которая поможет подключить двигатель к однофазной сети. На представленном шильдике видно, что двигатель имеет мощность 0,25 кВт и количество оборотов 1370 об/мин, что говорит о наличии двух пар полюсов обмоток. Значок ∆/Y означает, что обмотки можно соединить как треугольником, так и звездой, причем следующий показатель 220/380 В свидетельствует о том, что при соединении треугольником напряжение питающей сети должно быть 220 В, а при соединении звездой – 380 В. Если такой двигатель подключить в сеть 380 В треугольником, то обмотки его сгорят.


На следующем шильдике можно увидеть, что такой двигатель можно подключить только звездой и только в сеть 380 В. Скорее всего в клеммной коробке у такого АДКЗ будет только три вывода. Опытные электрики смогут подключить и такой двигатель к сети 220 В, но для этого надо будет вскрывать заднюю крышку, чтобы добраться до выводов обмоток, затем найти начало и конец каждой обмотки и произвести необходимую коммутацию. Задача сильно усложняется, поэтому авторы не рекомендуют подключать такие двигатели к сети 220 В, тем более что большинство современных АДКЗ могут подключаться по-разному.

На каждом двигателе есть клеммная коробка, расположенная чаще всего сверху. В этой коробке есть входы для питающих кабелей, а сверху она закрыта крышкой, которую необходимо снять при помощи отвертки.


Как говорят электрики и паталогоанатомы: «Вскрытие покажет»

Под крышкой можно увидеть шесть клемм, каждая из которых соответствует или началу, или концу обмотки. Помимо этого клеммы соединяются перемычками, и по их расположению можно определить, по какой схеме подключены обмотки.


Вскрытие клеммной коробки показало, что у «пациента» очевидная «звездная болезнь»

На фото «вскрытой» коробки видно, что провода, ведущие к обмоткам подписаны и перемычками соединены в одну точку концы всех обмоток – V2, U2, W2. Это свидетельствует о том, что имеет место соединение звездой. С первого взгляда может показаться, что концы обмоток расположены в логичном порядке V2, U2, W2, а начала «перепутаны» - W1, V1, U1. Однако, это сделано с определенной целью. Для этого рассмотрим клеммную коробку АДКЗ с подключенными обмотками по схеме треугольник.


На рисунке видно, что положение перемычек меняется – соединяются начала и концы обмоток, причем клеммы расположены так, что те же перемычки используются для перекоммутации. Тогда становится понятно почему «перепутаны» клеммы – так легче перебрасывать перемычки. На фотографии видно, что клеммы W2 и U1 соединены отрезком провода, но в базовой комплектации новых двигателей всегда присутствуют именно три перемычки.

Если после «вскрытия» клеммной коробки обнаруживается такая картина, как на фотографии, то это означает, что двигатель предназначен для звезды и трехфазной сети 380 В.


Такому двигателю лучше возвращаться в свою «родную стихию» — в цепи трехфазного переменного тока

Видео: Отличный фильм про трехфазные синхронные двигатели, который еще не успели раскрасить

Подключить трехфазный двигатель в однофазную сеть 220 В можно, но при этом надо быть готовым пожертвовать значительным снижением его мощности – в лучшем случае она составит 70% от паспортной, но для большинства целей это вполне приемлемо.

Основной проблемой подключения является создание вращающегося магнитного поля, которое наводит ЭДС в короткозамкнутом роторе. В трехфазных сетях реализовать это просто. При генерации трехфазной электроэнергии в обмотках статора наводится ЭДС из-за того, что внутри сердечника вращается намагниченный ротор, который приводится в движение энергией падающей воды на ГЭС или паровой турбиной на ГЭС и АЭС. Он создает вращающееся магнитное поле. В двигателях происходит обратное преобразование – изменяющееся магнитное поле приводит во вращение ротор.

В однофазных сетях получить вращающееся магнитное поле сложнее - надо прибегнуть к некоторым «хитростям». Для этого надо сдвинуть фазы в обмотках по отношению друг к другу. В идеальном случае нужно сделать так, что фазы будут сдвинуты по отношению друг к другу на 120°, но на практике это трудно реализовать, так как такие устройства имеют сложные схемы, стоят достаточно дорого и их изготовление и настройка требуют определенной квалификации. Поэтому в большинстве случаев применяют простые схемы, при этом несколько жертвуя мощностью.

Сдвиг фаз при помощи конденсаторов

Электрический конденсатор известен своим уникальным свойством не пропускать постоянный ток, но пропускать переменный. Зависимость токов, протекающих через конденсатор, от приложенного напряжения показана на графике.


Ток в конденсаторе всегда будет «лидировать» на четверть периода

Как только к конденсатору прикладывают возрастающее по синусоиде напряжение, он сразу «накидывается» на него и начинает заряжаться, так как изначально был разряжен. Ток в этот момент будет максимальным, но по мере заряда он будет уменьшаться и достигнет минимума в тот момент, когда напряжение достигнет своего пика.

Как только напряжение будет уменьшаться, конденсатор среагирует на это и будет начинать разряжаться, но ток при этом будет идти в обратном направлении, по мере разряда он будет увеличиваться (со знаком минус) до тех пор, пока уменьшается напряжение. К моменту, когда напряжение равно нулю ток достигает своего максимума.

Когда напряжение начинает расти со знаком минус, то идет перезаряд конденсатора и ток постепенно приближается от своего отрицательного максимума к нулю. По мере уменьшения отрицательного напряжения и стремлении его к нулю идет разряд конденсатора с увеличением тока через него. Далее, цикл повторяется заново.

Из графика видно, что за один период переменного синусоидального напряжения, конденсатор два раза заряжается и два раза разряжается. Ток, протекающий через конденсатор, опережает напряжение на четверть периода, то есть — 2* π/4= π/2=90° . Вот таким простым путем можно получить фазовый сдвиг в обмотках асинхронного двигателя. Сдвиг фаз в 90° не является идеальным в 120°, но вполне достаточен для того, чтобы на роторе появился необходимый вращательный момент.

Сдвиг фаз также можно получить, применив катушку индуктивности. В этом случае все произойдет наоборот – напряжение будет опережать ток на 90°. Но на практике применяют больше емкостной сдвиг фаз из-за более простой реализации и меньших потерь.

Схемы подключения трехфазных двигателей в однофазную сеть

Существует очень много вариантов подключения АДКЗ, но мы рассмотрим только наиболее часто используемые и наиболее просто реализуемые. Как было рассмотрено ранее, для сдвига фазы достаточно подключить параллельно какой-либо из обмоток конденсатор. Обозначение C р говорит о том, что это рабочий конденсатор.


Следует отметить, что соединение обмоток в треугольник предпочтительней, так как с такого АДКЗ можно «снять» полезной мощности больше, чем со звезды. Но существуют двигатели, предназначенные для работы в сетях с напряжением 127/220 В. О чем обязательно должна быть информация на шильдике.


Если читателям встретится такой двигатель, то - это можно считать удачей, так как его можно включать в сеть 220 В по схеме звезда, а это обеспечит и плавный пуск, и до 90% от паспортной номинальной мощности. Промышленностью выпускаются АДКЗ специально предназначенные для работы в сетях 220 В, которые могут называть конденсаторными двигателями.


Как двигатель не называй — он все равно асинхронный с короткозамкнутым ротором

Следует обратить внимание, что на шильдике указано рабочее напряжение 220 В и параметры рабочего конденсатора 90 мкФ (микрофарад, 1 мкФ=10 -6 Ф) и напряжение 250 В. Можно с уверенностью сказать, что этот двигатель фактически является трехфазным, но адаптированный для однофазного напряжения.

Для облегчения пуска мощных АДКЗ в сетях 220 В кроме рабочего применяют еще и пусковой конденсатор, который включается на непродолжительное время. После старта и набора номинальных оборотов пусковой конденсатор отключают, и вращение ротора поддерживает только рабочий конденсатор.


Пусковой конденсатор «дает пинка» при старте двигателя

Пусковой конденсатор – C п, подключают параллельно рабочему C р. Из электротехники известно, что при параллельном соединении емкости конденсаторов складываются. Для его «активации» применяют кнопочный выключатель SB, удерживаемый несколько секунд. Емкость пускового конденсатора обычно минимум в два с половиной раза выше, чем рабочего, причем сохранять заряд он может достаточно долго. При случайном прикосновении к его выводам можно получить довольно сильно ощутимый разряд через тело. Для того чтобы разрядить C п применяют резистор, подключенный параллельно. Тогда после отключения пускового конденсатора от сети, будет происходить его разряд через резистор. Его выбирают с достаточно большим сопротивлением 300 кОм-1 мОм и рассеиваемой мощностью не менее 2 Вт.

Расчет емкости рабочего и пускового конденсатора

Для уверенного запуска и устойчивой работы АДКЗ в сетях 220 В следует наиболее точно подобрать емкости рабочего и пускового конденсаторов. При недостаточной емкости C р на роторе будет создаваться недостаточный момент для подключения какой-либо механической нагрузки, а избыточная емкость может привести к протеканию слишком высоких токов, что в результате может привести к межвитковому замыканию обмоток, которое «лечится» только очень дорогостоящей перемоткой.

Схема Что рассчитывается Формула Что необходимо для расчетов
Емкость рабочего конденсатора для подключения обмоток звездой – Cр, мкФ Cр=2800*I/U;
I=P/(√3*U*η*cosϕ);
Cр=(2800/√3)*P/(U^2*n* cosϕ)=1616,6*P/(U^2*n* cosϕ)
Для всех:
I – ток в амперах, A;
U – напряжение в сети, В;
P – мощность электродвигателя;
η – КПД двигателя выраженное в величинах от 0 до 1 (если на шильдике двигателя оно указано в процентах, то этот показатель надо разделить на 100);
cosϕ – коэффициент мощности (косинус угла между вектором напряжения и тока), он всегда указывается в паспорте и на шильдике.
Емкость пускового конденсатора для подключения обмоток звездой – Cп, мкФ Cп=(2-3)*Cр≈2,5*Cр
Емкость рабочего конденсатора для подключения обмоток треугольником – Cр, мкФ Cр=4800*I/U;
I=P/(√3*U*η*cosϕ);
Cр=(4800/√3)*P/(U^2*n* cosϕ)=2771,3*P/(U^2*n* cosϕ)
Емкость пускового конденсатора для подключения обмоток треугольником – Cп, мкФ Cп=(2-3)*Cр≈2,5*Cр

Приведенных формул в таблице вполне достаточно для того, чтобы рассчитать необходимую емкость конденсаторов. В паспортах и на шильдиках может указываться КПД или рабочий ток. В зависимости от этого можно вычислить необходимые параметры. В любом случае тех данных будет достаточно. Для удобства наших читателей, можно воспользоваться калькулятором, который быстро рассчитает необходимую рабочую и пусковую емкость.

Практически любое производство в наши дни не обходится без мощного асинхронного электродвигателя. При запуске такого двигателя пусковой ток в 3-8 раз превышает значение номинального тока, необходимого для работы в нормально-устойчивом режиме.

Большой пусковой ток необходим для того, чтобы раскрутить ротор из состояния покоя. Для этого необходимо приложить гораздо больше усилий, чем для дальнейшего поддержания постоянного числа оборотов в заданный промежуток времени.

Значительные величины пусковых токов у асинхронных двигателей являются весьма нежелательным явлением, поскольку это может приводить к кратковременной нехватке энергии для другого подключенного к этой же сети оборудования (падению напряжения). Масса примеров такого влияния встречается как на производстве, так и в быту. Первое, что вспоминается — это «мигание» электрической лампочки при работе сварочного аппарата, но бывают случаи серьезнее: просадка напряжения может стать причиной бракованной партии товара на производстве, что ведет к большим финансовым и трудовым затратам. Большой пусковой ток также может вызвать ощутимые тепловые перегрузки обмотки электродвигателя, в результате чего происходит старение изоляции, ее повреждение и в конечном итоге может произойти сгорание двигателя.

Все это послужило мотивом для поиска решения по минимизации токов пуска. Одним из таких решений является метод запуска двигателя по схеме «звезда-треугольник». Для начала разберемся что же такое «звезда», а что — «треугольник», и чем они отличаются друг от друга. Звезда и треугольник являются самыми распространенными и применяемыми на практике схемами подключения трехфазных электродвигателей. При включении трехфазного электродвигателя «звездой» (см. Рисунок 1 ) концы обмоток статора соединяются вместе, соединение происходит в одной точке, называемой нулевой точкой или нейтралью. Трехфазное напряжение подается на начало обмоток.


Рисунок 1 — Схема подключения «звезда»

При соединении обмоток статора «звездой», соотношение между линейным и фазным напряжениями выражается формулой:


где U л — напряжение между двумя фазами, U ф — напряжение между фазой и нейтральным проводом

Значения линейного и фазного токов совпадают, т. е. I л = I ф .

При включении трехфазного электродвигателя по схеме «треугольник» (см. Рисунок 2 ) обмотки статора электродвигателя соединяются последовательно. Таким образом, конец одной обмотки соединяется с началом следующей, напряжение в этом случае подается на точки соединения обмоток. При соединеии обмоток статора «треугольником» напряжение на фазе равно линейному напряжению между двумя проводами: U л = U ф .
Рисунок 2 — Схема подключения «треугольник»

Однако ток в линии (сети) больше, чем ток в фазе, что описывается формулой:


где I л — линейный ток, I ф — фазный ток

Получается, что соединяя обмотки «звездой», мы уменьшаем линейный ток, чего изначально и добивались. Но есть и обратная сторона этой схемы: как мы видим из формулы, пусковой момент двигателя прямо пропорционален фазному напряжению:


где U — фазное напряжение обмотки статора, r 1 — активное сопротивление фазы обмотки статора, r 2 — приведенное значение активного сопротивления фазы обмотки ротора,
x 1 — индуктивное сопротивление фазы обмотки статора, x 2 — приведенное значение индуктивного сопротивления фазы обмотки неподвижного ротора,
m — количество фаз, p — число пар полюсов

Чтобы было нагляднее, давайте рассмотрим пример: предположим, что рабочей схемой обмотки асинхронного электродвигателя является «треугольник», а линейное напряжение питающей сети равно 380 В, сопротивление обмотки статора Z = 10 Ом . Если обмотки во время пуска подключены «звездой», то уменьшатся напряжение и ток в фазах:

Фазный ток равен линейному току и равен:

После того, как двигатель набрал необходимые обороты, т. е. разогнался, переключаем обмотки со «звезды» на «треугольник», в этом случае получаем совершенно другие значения тока и напряжения:


Соответственно, при пуске двигателя по схеме «звезда», фазное напряжение в √3 раз меньше линейного, а по схеме «треугольник» — они равны. Отсюда следует, что момент при пуске по схеме «звезда» в 3 раза меньше, а значит, запуская двигатель по этой схеме, мы не сможем добиться выхода двигателя на номинальную мощность. Решая одну проблему возникает вторая, не менее острая, чем повышенные пусковые токи. Но единое решение все-таки есть: необходимо скомбинировать схемы подключения двигателя так, чтобы при пуске мощного двигателя не было больших токов в сети, а после того, как двигатель выйдет на необходимые для его работы обороты, происходит переключение на схему «треугольник», что позволяет работать со 100% нагрузкой без каких-либо проблем.

С поставленной задачей прекрасно справляется реле времени Finder 80.82 . При подаче питания на реле, мгновенно замыкается контакт, который отвечает за подключение по схеме «звезда». После заданного промежутка времени, на котором обороты двигателя достигают рабочей частоты, контакт схемы «звезда» размыкается и замыкается контакт, который отвечает за подключение по схеме «треугольник». Контакты останутся в таком положении до снятия питания с реле. Наглядная диаграмма работы данного реле представлена на Рисунке 3 .



Рисунок 3 — Временная диаграмма реле времени 80.82

Рассмотрим более подробно реализацию данной схемы на практике. Она применима только для двигателей, у которых на шильдике указано «Δ/Y 380/660В». На Рисунке 4 представлена силовая часть схемы «звезда-треугольник», в которой используется три электромагнитных пускателя.


Рисунок 4 — Силовая часть схемы «звезда-треугольник»

Как было описано ранее, для управления переключением со схемы «звезда» на схему «треугольник» необходимо воспользоваться реле Finder 80.82. На Рисунке 5 представлена схема управления с помощью данного реле.



Рисунок 5 — Управление схемой «звезда-треугольник»

Разберем алгоритм работы данной схемы:

После нажатия кнопки S1.1, запитывается катушка пускателя КМ1, в результате чего, замыкаются силовые контакты КМ1 и при помощи дополнительного контакта КМ1.1 реализуется самоподхват пускателя. Одновременно подается напряжение на реле времени U1. Замыкаются контакты реле времени 17-18 и включается пускатель КМ2. Таким образом, происходит запуск двигателя по схеме «звезда». По истечении времени Т (см. Рисунок 3 ), контакт реле времени 17-18 мгновенно разомкнется, пройдет задержка времени Tu, и замкнется контакт 17-28. Вследствие чего, сработает пускатель КМ3, который осуществляет переключение на схему «треугольник». Нормально замкнутые контакты пускателей КМ2.2 и КМ3.2 используется для предотвращения одновременного включения пускателей КМ2 и КМ3. Чтобы защитить двигатель от перегрузки, в силовой цепи установлено тепловое реле КК1. В случае перегрузки, тепловое реле разомкнет силовую цепь и цепь управления через контакт КК1.1. Остановка двигателя происходит при нажатии кнопки S1.2, которая разрывает цепь самоподхвата и обесточит катушку пускателя КМ1.

Обобщая написанное, можно сделать вывод, что для облегчения пуска мощного электродвигателя, рекомендуется изначально запускать его по схеме «звезда», что позволяет значительно снизить пусковые токи, уменьшить просадку напряжения в сети, но не позволяет двигателю выйти на номинальный режим работы. Для выхода двигателя на номинальный режим необходимо осуществить переключение обмоток статора на схему «треугольник». Схема переключения обмоток со «звезды» в «треугольник» реализована с помощью реле времени Finder 80.82 , в котором устанавливается время разгона электродвигателя.

    Список используемой литературы:
  1. ГОСТ 11828-86 «Определение вращающих моментов и пусковых токов».
  2. Вешеневский С. Н. Характеристики двигателей в электроприводе. // Издание 6-е, исправленное - Москва, Издательство «Энергия», 1977
  3. Войнаровский П. Д. Электродвигатели // Энциклопедический словарь Брокгауза и Ефрона: в 86 т. (82 т. и 4 доп.) - СПб., 1890-1907

Схемы подключения электродвигателя. Звезда, треугольник, звезда - треугольник.

Асинхронные двигатели, имея ряд таких неоспоримых достоинств, как надежность в эксплуатации, высокая производительность, способность выдерживать большие механические перегрузки, неприхотливость и невысокая стоимость обслуживания и ремонта, обусловленные простотой конструкции, имеют, конечно и свои определенные недостатки.

На практике применяются основные способы подключения к сети трёхфазных электродвигателей: "подключение звездой" и "подключение треугольником".

При соединении трёхфазного электродвигателя звездой, концы его статорных обмоток соединяются вместе, соединение происходят в одной точке, а на начала обмоток подаётся трехфазное напряжение (рис 1).

При соединении трёхфазного электродвигателя по схеме подключения "треугольником" обмотки статора электродвигателя соединяются последовательно таким образом что конец одной обмотки соединяется началом следующей и так далее (рис 2).

Не вдаваясь в технические и теоретические основы электротехники известно, что электродвигатели у которого обмотки, соединенные звездой работают плавнее и мягче, чем электродвигатели с соединенными обмотками треугольником, необходимо отметить, что при соединении обмоток звездой электродвигатель не может развить полную мощность. При соединении обмоток по схеме треугольник электродвигатель работает на полную паспортную мощность (что составляет в 1,5 раз больше по мощности, чем при соединении звездой), но при этом имеет очень большие значения пусковых токов.

В связи с этим для снижения пусковых токов целесообразно (особенно для электродвигателей с большей мощностью) подключение по схеме звезда - треугольник; первоначально запуск осуществляется по схеме «звезда», после этого (когда электродвигатель «набрал обороты»), происходит автоматическое переключение по схеме «треугольник».

Схема управления:

Еще вариант схемы управления двигателем

Подключение напряжения питания через контакт NC (нормально закрытый) реле времени К1 и контакт NC К2, в цепи катушки пускателя К3.

После включения пускателя К3, своими нормально-замкнутыми контактами размыкает цепи катушки пускателя К2 контактами К3 (блокировка случайного включения) и замыкает контакт К3, в цепи питания катушки магнитного пускателя К1, который совмещен с контактами реле времени.

При включении пускателя К1 происходит замыкание контактов К1 в цепи катушки магнитного пускателя К1 и одновременно включается реле времени, размыкается контакт реле времени К1 в цепи катушки пускателя К3, замыкает контакт реле времени К1 в цепи катушки пускателя К2.

Отключение обмотки пускателя К3, замыкается контакт К3 в цепи катушки магнитного пускателя К2. После включение пускателя К2, размыкает своими контактами К2 в цепи катушки питания пускателя К3.

(Начало обмоток статора: U1; V1; W1. Концы обмоток: U2; V2; W2. На клеммной доске шпильки начала и концов обмоток расположены в строгой последовательности: W2; U2; V2; под ними расположены: U1; V1; W1. При подключении двигателя в "треугольник" шпильки соединяются перемычками: W2-U1; U2-V1; V2-W1.)

На начала обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подаётся трехфазное напряжение. При срабатывании магнитного пускателя К3 с помощью его контактов К3, происходит замыкание, соединяя концы обмоток U2, V2 и W2 между собой обмотки двигателя соединены звездой.

Через некоторое время срабатывает реле времени, совмещённое с пускателем К1, отключая пускатель К3 и одновременно включая К2, замыкаются силовые контакты К2 и происходит подача напряжение на концы обмоток электродвигателя U2, V2 и W2. Таким образом электродвигатель включается по схеме треугольник.

Для запуска двигателей по схеме звезда-треугольник разными производителями выпускаются так называемые пусковые реле, название они могут иметь разные "Пусковые реле времени" , реле "старт-дельта" и др., но назначение у них одно и тоже:

Типовая схема с пусковым реле времени (реле "звезда/треугольник") для управления запуском трехфазного асинхронного двигателя:

Вывод : Для снижения пусковых токов запускать двигатель необходимо в следующей последовательности: сначала включенным по схеме "звезда" на пониженных оборотах, далее переключаться на "треугольник".
Запуск сначала треугольником создает максимальный момент, а уже переключение на звезду (пусковой момент в 2 раза меньше) с дальнейшей работой в номинальном режиме, когда электродвигатель «набрал обороты», происходит автоматическое переключение на схему треугольник, стоит учитывать какая нагрузка на валу перед запуском, ведь вращающий момент при звезде ослаблен, поэтому такой способ запуска вряд ли подойдет для очень загруженных двигателей, может выйти из строя.

Каждый статор трехфазного электродвигателя имеет три катушечные группы (обмотки) — по одной на каждую фазу, а у каждой катушечной группы имеется по 2 вывода — начало и конец обмотки, т.е. всего 6 выводов которые подписываются следующим образом:

  • С1 (U1) — начало первой обмотки, С4 (U2) — конец первой обмотки.
  • С2 (V1) — начало второй обмотки, С5 (V2) — конец второй обмотки.
  • С3 (W1) — начало третьей обмотки, С6 (W2) — конец третьей обмотки.

Условно на схемах каждая обмотка изображается следующим образом:

Начала и концы обмоток выводятся в клемную коробку электродвигателя в следующем порядке:

Основными схемами соединения обмоток являются треугольник (обозначается — Δ) и звезда (обозначается — Y) их мы и разберем в данной статье.

Примечание: В клемной коробке некоторых электродвигателей можно увидеть только три вывода — это значит, что обмотки двигателя уже соединены внутри его статора. Как правило внутри статора обмотки соединяются при ремонте электродвигателя (в случае если заводские обмотки сгорели). В таких двигателях обмотки, как правило, соединены по схеме «звезда» и рассчитаны на подключение в сеть 380 Вольт. Для подключения такого двигателя необходимо просто подать три фазы на три его вывода.

  1. Схема соединения обмоток электродвигателя по схеме «треугольник»

Что бы соединить обмотки электродвигателя по схеме «треугольник» необходимо: конец первой обмотки (С4/U2) соединить с началом второй (С2/V1) , конец второй (С5/V2) — с началом третьей (С3/W1) , а конец третьей обмотки (С6/W2) — с началом первой (С1/U1).

На выводы «A», «B» и «C» подается напряжение.

В клемной коробке электродвигателя соединение обмоток по схеме «треугольник» имеет следующий вид:

A, B, C — точки подключения питающего кабеля.

  1. Схема соединения обмоток электродвигателя по схеме «звезда»

Что бы соединить обмотки электродвигателя по схеме «звезда» необходимо концы обмоток (С4/ U2, С5/V2 и С6/W2) соединить в общую точку, напряжение при этом подается на начала обмоток (С1/U1, С2/V1 и С3/W1).

Условно на схеме это изображается следующим образом:

В клемной коробке электродвигателя соединение обмоток по схеме «звезда» имеет следующий вид:

  1. Определение выводов обмоток

Иногда возникают ситуации когда сняв крышку с клемной коробки электродвигателя можно с ужасом обнаружить следующую картину:

При этом выводы обмоток не подписаны, что же делать? Без паники, этот вопрос вполне решаем.

Первое, что нужно сделать — это разделить выводы по парам, в каждой паре должны быть выводы относящиеся к одной обмотке, сделать это очень просто, нам понадобится тестер или двухполюсный указатель напряжения.

В случае использования тестера устанавливаем его переключатель в положение измерения сопротивления (подчеркнуто красной линией), при использовании двухполюсного указателя напряжения им, перед применением, необходимо коснуться токоведущих частей находящихся под напряжением на 5-10 секунд, для его зарядки и проверки работоспособности.

Далее необходимо взять один любой вывод обмотки, условно примем его за начало первой обмотки и соответственно подписываем его «U1», после касаемся одним щупом тестера или указателя напряжения подписанного нами вывода «U1», а вторым щупом любого другого вывода из оставшихся пяти неподписанных концов. В случае, если коснувшись вторым щупом второго вывода показания тестера не изменились (тестер показывает единицу) или в случае с указателем напряжения — ни одна лампочка не зажглась — оставляем этот конец и касаемся вторым щупом другого вывода из оставшихся четырех концов, перебираем вторым щупом концы до тех пор пока показания тестера не изменятся, либо, в случае с указателем напряжения — до тех пор пока не загорится лампочка «Test». Найдя таким образом второй вывод нашей обмотки принимаем его условно как конец первой обмотки и подписываем его соответственно «U2».

Таким же образом поступаем с оставшимися четырьмя выводами, так же разделив их на пары подписав их соответственно как V1,V2 и W1,W2. Как это делается можно увидеть на видео ниже.

Теперь, когда все выводы разделены по парам, необходимо определить реальные начала и концы обмоток. Сделать это можно двумя методами:

Первый и самый простой метод — метод подбора, может применяться для электродвигателей мощностью до 5 кВт. Для этого берем наши условные концы обмоток (U2,V2 и W2) и соединяем их, а на условные начала (U1,V1 и W1), кратковременно, желательно не более 30 секунд, подаем трехфазное напряжение:

Если двигатель запустился и работает нормально, значит начала и концы обмоток определены верно, если двигатель сильно гудит и не развивает должные обороты, значит где то есть ошибка. В этом случае необходимо всего лишь поменять любые два вывода одной обмотки местами, например U1 c U2 и запустить заново.